Строение. Классификация видов лейкоцитов, основные функции клеток, нормы и отклонения в анализе крови


Которые характеризуются отсутствием окраски, наличием ядра и способностью к передвижению. Название переводится с греческого как «белые клетки». Группа лейкоцитов неоднородна. В нее входят несколько разновидностей, которые отличаются по происхождению, развитию, внешнему виду, строению, размерам, форме ядра, функциям. Образуются лейкоциты в лимфатических узлах и костном мозге. Их основная задача – защита организма от внешних и внутренних «врагов». Находятся лейкоциты в крови и в различных органах и тканях: в миндалинах, в кишечнике, в селезенке, в печени, в легких, под кожей и слизистыми. Они могут мигрировать во все части организма.

Белые клетки делятся на две группы:

  • Зернистые лейкоциты – гранулоциты. Они содержат крупные ядра неправильной формы, состоящие из сегментов, которых тем больше, чем старше гранулоцит. К этой группе относятся нейтрофилы, базофилы и эозинофилы, которые различают по восприятию ими красителей. Гранулоциты – это полиморфноядерные лейкоциты. .
  • Незернистые – агранулоциты. К ним относятся лимфоциты и моноциты, содержащие одно простое ядро овальной формы и не имеющие характерной зернистости.

Где образуются и сколько живут?

Основная часть белых клеток, а именно гранулоциты, производится красным костным мозгом из стволовых клеток. Из материнской (стволовой) образуется клетка-предшественница, затем переходит в лейкопоэтиночувствительную, которая под действием специфического гормона развивается по лейкоцитарному (белому) ряду: миелобласты – промиелоциты – миелоциты – метамиелоциты (юные формы) – палочкоядерные – сегментоядерные. Незрелые формы находятся в костном мозге, созревшие поступают в кровяное русло. Гранулоциты живут примерно 10 суток.

В лимфатических узлах вырабатываются лимфоциты и значительная часть моноцитов. Часть агранулоцитов из лимфатической системы поступает в кровь, которая их переносит к органам. Лимфоциты живут долго – от нескольких дней и до нескольких месяцев и лет. Срок жизни моноцитов – от нескольких часов до 2-4 дней.

Строение

Строение лейкоцитов разных видов отличается, и выглядят они по-разному. Общее для всех – это наличие ядра и отсутствие собственной окраски. Цитоплазма может быть зернистой или однородной.

Нейтрофилы

Нейтрофилы – полиморфноядерные лейкоциты. Они имеют круглую форму, их диаметр составляет около 12 мкм. В цитоплазме находится два вида гранул: первичные (азурофильные) и вторичные (специфические). Специфические мелкие, более светлые и составляют около 85 % от всех гранул, имеют в составе бактерицидные вещества, белок лактофферин. Аузорофильные крупнее, их содержится порядка 15 %, в них присутствуют ферменты, миелопероксидаза. В специальном красителе гранулы окрашиваются в сиреневый цвет, а цитоплазма – в розовый. Зернистость мелкая, состоит из гликогена, липидов, аминокислот, РНК, ферментов, за счет которых происходит расщепление и синтез веществ. У юных форм ядро бывает бобовидным, у палочкоядерных – в виде палочки или подковы. У зрелых клеток – сегментоядерных – оно имеет перетяжки и выглядит разделенным на сегменты, которых может быть от 3 до 5. В ядре, которое может иметь отростки (придатки) содержится много хроматина.

Эозинофилы

Эти гранулоциты достигают в диаметре 12 мкм, имеют мономорфную крупную зернистость. В цитоплазме содержатся гранулы овальной и сферической формы. Зернистость окрашивается кислыми красителями в розовый цвет, цитоплазма становится голубой. Присутствуют гранулы двух видов: первичные (азурофильные) и вторичные, или специфические, заполняющие почти всю цитоплазму. В центре гранул содержится кристаллоид, в котором находится основной белок, ферменты, пероксидаза, гистаминаза, фосфолипаза, цинк, коллагеназа, катепсин. Ядро эозинофилов состоит из двух сегментов.

Базофилы

Эта разновидность лейкоцитов с полиморфной зернистостью имеет размеры от 8 до 10 мкм. Гранулы разных размеров окрашиваются основным красителем в темный сине-фиолетовый цвет, цитоплазма – в розовый. Зернистость содержит гликоген, РНК, гистамин, гепарин, ферменты. В цитоплазме находятся органеллы: рибосомы, эндоплазматическая сеть, гликоген, митохондрии, аппарат Гольджи. Ядро чаще всего состоит из двух сегментов.

Лимфоциты

По размеру их можно разделить на три вида: крупные (от 15 до 18 мкм), средние (около 13 мкм), мелкие (6-9 мкм). Последних в крови больше всего. По форме лимфоциты овальные или круглые. Ядро крупное, занимает практически всю клетку и окрашивается в синий цвет. В небольшом количестве цитоплазмы содержится РНК, гликоген, ферменты, нуклеиновые кислоты, аденозинтрифосфат.

Моноциты

Это самые большие по размеру белые клетки, которые могут достигать в диаметре 20 мкм и более. В цитоплазме содержатся вакуоли, лизосомы, полирибосомы, рибосомы, митохондрии, аппарат Гольджи. Ядро моноцитов крупное, неправильной, бобовидной или овальной формы, может иметь выпуклости и вмятины, окрашивается в красновато-фиолетовый. Цитоплазма приобретает под воздействием красителя серо-голубой или серо-синий цвет. В ней содержатся ферменты, сахариды, РНК.

Лейкоциты в крови здоровых мужчин и женщин содержатся в следующем соотношении:

  • нейтрофилы сегментоядерные – от 47 до 72%;
  • нейтрофилы палочкоядерные – от 1 до 6%;
  • эозинофилы – от 1 до 4%;
  • базофилы – около 0,5%;
  • лимфоциты – от 19 до 37%;
  • моноциты – от 3 до 11%.

Абсолютный уровень лейкоцитов в крови у мужчин и женщин в норме имеет следующие значения:

  • нейтрофилы палочкоядерные – 0,04-0,3Х10⁹ на литр;
  • нейтрофилы сегментоядерные – 2-5,5Х10⁹ на литр;
  • нейтрофилы юные – отсутствуют;
  • базофилы – 0,065Х10⁹ на литр;
  • эозинофилы – 0,02-0,3Х10⁹ на литр;
  • лимфоциты – 1,2-3Х10⁹ на литр;
  • моноциты – 0,09-0,6Х10⁹ на литр.

Функции

Общие функции лейкоцитов следующие:

  1. Защитная – заключается в формировании иммунитета специфического и неспецифического. Основной механизм – фагоцитоз (захват клеткой патогенного микроорганизма и лишение его жизни).
  2. Транспортная – заключается в способности белых клеток адсорбировать аминокислоты, ферменты и другие вещества, находящиеся в плазме, и переносить их в нужные места.
  3. Гемостатическая – участвуют в свертывании крови.
  4. Санитарная – способность с помощью содержащихся в лейкоцитах ферментов рассасывать ткани, погибшие при травмах.
  5. Синтетическая – способность некоторых белков синтезировать биоактивные вещества (гепарин, гистамин и другие).

Каждому виду лейкоцитов отводятся свои функции, в том числе специфические.

Нейтрофилы

Главная роль – защита организма от инфекционных агентов. Эти клетки захватывают бактерии в свою цитоплазму и переваривают. Кроме этого, они могут вырабатывать противомикробные вещества. При проникновении инфекции в организм они устремляются к месту внедрения, накапливаются там в большом количестве, поглощают микроорганизмы и погибают сами, превращаясь в гной.

Эозинофилы

При заражении глистами эти клетки проникают в кишечник, разрушаются и выделяют токсические вещества, убивающие гельминтов. При аллергиях эозинофилы удаляют избыточный гистамин.

Базофилы

Эти лейкоциты принимают участие в формировании всех аллергических реакций. Их называют скорой помощью при укусах ядовитых насекомых и змей.

Лимфоциты

Они постоянно патрулируют организм с целью обнаружения чужеродных микроорганизмов и вышедших из-под контроля клеток собственного организма, которые могут мутировать, затем быстро делиться и образовывать опухоли. Среди них есть информаторы – макрофаги, которые постоянно перемещаются по организму, собирают подозрительные объекты и доставляют их лимфоцитам. Лимфоциты делятся на три вида:

  • Т-лимфоциты отвечают за клеточный иммунитет, вступают в контакт с вредными агентами и уничтожают их;
  • В-лимфоциты определяют чужеродные микроорганизмы и вырабатывают против них антитела;
  • NK-клетки. Это настоящие киллеры, которые поддерживают в норме клеточный состав. Их функция – распознавать дефектные и раковые клетки и уничтожать их.

Как подсчитывают


Для подсчета лейкоцитов используется оптический прибор – камера Горяева

Уровень белых клеток (WBC) определяют во время проведения клинического анализа крови. Подсчет лейкоцитов осуществляется автоматическими счетчиками или в камере Горяева – оптического прибора, названного в честь его разработчика – профессора Казанского университета. Этот прибор отличается высокой точностью. Состоит из толстого стекла с углублением прямоугольной формы (собственно камерой), где нанесена микроскопическая сетка, и тонкого покровного стекла.

Подсчет происходит следующим образом:

  1. Уксусную кислоту (3-5%) подкрашивают метиленовой синью и наливают в пробирку. В капиллярную пипетку набирают кровь и осторожно добавляют ее в приготовленный реактив, после чего как следует перемешивают.
  2. Покровное стекло и камеру вытирают насухо марлей. Покровное стекло притирают к камере, чтобы появились цветные кольца, заполняют камеру кровью и ждут в течение минуты, пока не остановится движение клеток. Подсчитывают количество лейкоцитов в ста больших квадратах. Рассчитывают по формуле X = (a х 250 х 20): 100, где «a» – количество лейкоцитов в 100 квадратах камеры, «х» – количество лейкоцитов в одном мкл крови. Полученный по формуле результат умножают на 50.

Заключение

Лейкоциты – разнородная группа элементов крови, которые осуществляют защиту организма от внешних и внутренних заболеваний. Каждый вид белых клеток выполняет определенную функцию, поэтому важно, чтобы их содержание соответствовало норме. Любые отклонения могут указывать на развитие болезней. Анализ крови на лейкоциты позволяет на ранних этапах заподозрить патологию, даже если отсутствует симптоматика. Это способствует своевременной диагностике и дает больше шансов на выздоровление.

Или белые кровяные тельца , являются ядросодержащими клетками диаметром 4-20 мкм. По месту расположения лейкоциты можно разделить на три пула: клетки, находящиеся в органах кроветворения, где происходит их образование, созревание и формируется некоторый резерв лейкоцитов; содержащиеся в крови и лимфе; лейкоциты тканей, где они выполняют свои защитные функции. В свою очередь лейкоциты крови представлены двумя пулами: циркулирующими, которые подсчитываются при проведении общего анализа крови и краевым или пристеночным пулом, к которому относят лейкоциты, ассоциированные со стенками сосудов, в особенности посткапиллярных венул.

Количество лейкоцитов

В здоровых людей в состоянии покоя содержание лейкоцитов составляет от 4 . 10 9 до 9 . 10 9 клеток/л (4000-9000 в 1 мм 3 , или мкл). Увеличение количества лейкоцитов в крови выше нормы (более 9 . 10 9 /л) называется лейкоцитозом, а уменьшение (менее 4 . 10 9 /л) — лейкопенией. Лейкоцитозы и лейкопении бывают физиологическими и патологическими.

Физиологический лейкоцитоз наблюдается у здоровых людей после приема пищи, особенно, богатой белком («пищеварительный» или перераспределительный лейкоцитоз); во время выполнения и после мышечной работы («миогенный» лейкоцитоз до 20 . 10 9 клеток/л); у новорожденных (также до 20 . 10 9 лейкоцитов/л) и у детей до 5-8 лет (/9-12/ . 10 9 лейкоцитов/л); во 2 и 3 триместрах беременности (до /12-15/ .10 9 лейкоцитов/л). Патологический лейкоцитоз имеет место при острых и хронических лейкозах, многих острых инфекционных и воспалительных заболеваниях. инфаркте миокарда, обширных ожогах и других состояниях.

Физиологическая лейкопения наблюдается у жителей Заполярья и полярников, при белковом голодании и во время глубокого сна. Патологическая лейкопения характерна для некоторых бактериальных инфекций (брюшного тифа, бруцеллеза) и вирусных заболеваний (грипп, корь и др.), системной красной волчанке и других аутоиммунных заболеваниях, медикаментозных (действии цитостатиков), токсических (бензол), алиментарно-токсических (употребление в пищу перезимовавших злаков) поражениях, лучевой болезни.

Физиологические лейкоцитозы. Лейкопении

В норме количество лейкоцитов у взрослых людей колеблется от 4,5 до 8,5 тыс. в 1 мм 3 , или (4,5-8,5) . 10 9 /л.

Увеличение числа лейкоцитов носит название лейкоцитоза, уменьшение — лейкопении. Лейкоцитозы могут быть физиологическими и патологическими, а лейкопении встречаются только при патологии.

Различают следующие виды физиологических лейкоцитозов:

  • пищевой - возникает после приема пищи. При этом число лейкоцитов увеличивается незначительно (в среднем на 1-3 тыс. в мкл) и редко выходит за границу верхней физиологической нормы. Большое количество лейкоцитов скапливается в подслизистой основе тонкой кишки. Здесь они осуществляют защитную функцию — препятствуют попаданию чужеродных агентов в кровь и лимфу. Пищевой лейкоцитоз носит перераспределительный характер и обеспечивается поступлением лейкоцитов в кровоток из депо крови;
  • миогенный — наблюдается после выполнения тяжелой мышечной работы. Число лейкоцитов при этом может возрастать в 3-5 раз. Огромное количество лейкоцитов при физической нагрузке скапливается в мышцах. Миогенный лейкоцитоз носит как перераспределительный, гак и истинный характер, гак как при нем наблюдается усиление костномозгового кроветворения;
  • эмоциональный - возникает при болевом раздражении, носит перераспределительный характер и редко достигает высоких показателей;
  • при беременности большое количество лейкоцитов скапливается в подслизистой основе матки. Этот лейкоцитоз в основном носит местный характер. Его физиологический смысл состоит не только в предупреждении попадания инфекции в организм матери, но и в стимулировании сократительной функции матки.

Лейкопении встречаются только при патологических состояниях.

Особенно тяжелая лейкопения может наблюдаться в случае поражения костного мозга — острых лейкозах и лучевой болезни. При этом изменяется функциональная активность лейкоцитов, что приводит к нарушениям специфической и неспецифической защиты, попутным заболеваниям, часто инфекционного характера, и даже смерти.

Свойства лейкоцитов

Лейкоциты обладают важными физиологическими свойствами, обеспечивающими выполнение их функций: 1) распознавать сигналы других клеток крови и эндотелия их рецепторами; 2) способностью активироваться и отвечать на действие сигналов рядом реакций среди которых: остановка движения в токе крови, адгезия — прикрепление к стенке сосуда, активация амебовидной подвижности, изменение формы и перемещение через неповрежденную стенку капилляра или венулы. В тканях активированные лейкоциты перемещаются к местам повреждений и запускают в действие их защитные механизмы: фагоцитоз — поглощение и переваривание микроорганизмов и чужеродных тел, секрецию водорода пероксида, цитокинов, иммуноглобулинов, веществ, способствующих заживлению повреждения и пр.

Лимфоциты являются непосредственными участниками реакций клеточного и гуморального иммунитета.

Функции лейкоцитов

Защитная - заключается в уничтожении лейкоцитами микроорганизмов путем их фагоцитоза или действием на них другими бактерицидными лейкоцитарными факторами; противоопухолевом действии на опухолевые клетки самого организма; противогельминтном действии; антитоксической активности; участии в формировании различных форм иммунитета, а также в процессах свертывания крови и фибринолизе.

Регенеративная - высвобождение лейкоцитами факторов способствующих заживлению поврежденных тканей.

Регуляторная - образование и высвобождение цитокинов, ростовых и других факторов, регулирующих гемоцитопоэз и иммунный ответ.

Защитная функция является одной из важнейших функций, выполняемых лейкоцитами. В ее реализации каждый вид лейкоцитов играет свою уникальную роль. Нейтрофилы и моноциты являются полифункциональными клетками: основными фагоцитами бактерий, вирусов и других микроорганизмов; ими образуются или переносятся белки системы комплемента, интерфероны, лизоцим; они принимают участие в остановке кровотечения и фибринолизе.

Фагоцитоз осуществляется за несколько стадий: хемотаксиса — приближения фагоцита к объекту фагоцитоза по градиенту хемоаттрактанта; аттракции — привлечении лейкоцита к объекту, его узнавании и окружении; поглощения и уничтожения (киллинга) жизнеспособных объектов и разрушения (переваривания) фрагментов фагоцитированного объекта лизосомальными ферментами. Фагоцитоз в здоровом организме обычно является завершенным, т.е. он заканчивается полным уничтожением чужеродного объекта. В отдельных случаях имеет место незавершенный фагоцитоз, который не обеспечивает полноценной противомикробной защитной функции. Фагоцитоз является одним из компонентов неспецифической резистентности (устойчивости) организма к действию инфекционных факторов.

Базофилы продуцируют хемоаттрактанты для нейтрофилов и эозинофилов; регулируют агрегатное состояние крови, локальный кровоток (микроциркуляцию) и проницаемость капилляров (за счет выделения гепарина, гистамина, серотонина); секретируют гепарин и принимают участие в жировом обмене.

Лимфоциты обеспечивают формирование и реакции специфического клеточного (Т-лимфоциты) и гуморального (В-лимфоциты) иммунитета, а также иммунологический надзор за клетками организма и трансплантационный иммунитет.

Лейкоцитарная формула

Между числом отдельных видов лейкоцитов, содержащихся в крови, существуют определенные соотношения, процентное выражение которых называют лейкоцитарной формулой (табл. 1).

Это означает, что если общее содержание лейкоцитов принять за 100%, то содержание в крови отдельного вида лейкоцитов составит определенный процент от их общего количества в крови. Например, в нормальных условиях содержание моноцитов равно 200-600 клеток в 1 мкл (мм 3), что составляет 2-10% от общего содержания всех лейкоцитов равного 4000-9000 клеток в 1 мкл (мм 3) крови (см. табл. 11.2). При ряде физиологических и патологических состояний нередко выявляется увеличение или уменьшение содержания какого-либо вида лейкоцитов.

Увеличение количества отдельных форм лейкоцитов обозначают как нейтрофилез, эозино- или базофилия, моноцитоз или лимфоцитоз. Уменьшение же содержания отдельных форм лейкоцитов получило соответственно название нейтро-, эозино-, моноцито- и лимфопении.

Характер лейкоцитарной формулы зависит от возраста человека, условий проживания и других состояний. В физиологических условиях у здорового человека абсолютные лимфоцитоз и нейтропения имеют место в детском возрасте, начиная с 5-7-х суток жизни до 5-7 лет (явление «лейкоцитарных ножниц» у детей). Лимфоцитоз и нейтропения могут развиваться у детей и взрослых, живущих в тропиках. Лимфоцитоз отмечается также у вегетарианцев (при преимущественно углеводном питании), а нейтрофилия — характерна для «пищеварительного», «миогенного» и «эмоционального» лейкоцитоза. Нейтрофилия и сдвиг лейкоцитарной формулы влево отмечаются при острых воспалительных процессах (пневмония, ангина и др.), а эозинофилия — при аллергических состояниях и глистных инвазиях. У больных с хроническими заболеваниями (туберкулез, ревматизм) может развиваться лимфоцитоз. Лейкопения, нейтропения и сдвиг лейкоцитарной формулывправо с гиперсегментацией ядер нейтрофилов являются дополнительными признаками В 12 - и фолиеводефицитной анемии. Таким образом, анализ содержания отдельных форм лейкоцитов но лейкоцитарной формуле имеет важное диагностическое значение.

Таблица 1. Лейкоцитарная формула кроки взрослою здоровою человека

Пока-затели

Общее число лейкоцитов

ГРАНУЛОЦИТЫ

АГРАНУЛОЦИТЫ

незрелые

зрелые (сегментоядерные)

лимфо-циты

моно-циты

палочко- ядерные

нейтро-филы

эозино-филы

базо-филы

СДВИГ ВЛЕВО ←

Увеличение незрелых (молодых) форм гранулоцитов в крови указывает на стимуляцию лейкопоэза в костном мозге

СДВИГ ВПРАВО→

Увеличение зрелых форм гранулоцитов (нейтрофилов) в крови указывает на торможение лейкопоэза в костном мозге

Виды и характеристика лейкоцитов

Лейкоциты, или белые клетки крови, представляют собой образования различной формы и величины. По строению лейкоциты делятся на зернистые , или гранулоциты , и незернистые , или агранулоциты. К гранулоцитам относятся нейтрофилы, эозинофилы и базофилы, к агранулоцитам — лимфоциты и моноциты. Свое наименование клетки зернистого ряда получили от способности окрашиваться красками: эозинофилы воспринимают кислую краску (эозин), базофилы — щелочную (гематоксилин), нейтрофилы — и ту, и другую.

Характеристика отдельных видов лейкоцитов:

  • нейтрофилы - самая большая группа белых кровяных телец, они составляют 50-75% всех лейкоцитов. В крови циркулирует не более 1% имеющихся в организме нейтрофилов. Основная их часть сосредоточена в тканях. Наряду с этим, в костном мозге имеется резерв, превосходящий число циркулирующих нейтрофилов в 50 раз. Выброс их в кровь происходит по «первому требованию» организма.

Основная функция нейтрофилов — защита организма от проникших в него микробов и их токсинов. Нейтрофилы первыми прибывают в место повреждения тканей, т.е. являются авангардом лейкоцитов. Их появление в очаге воспаления связано со способностью к активному передвижению. Они выпускают псевдоподии, проходят через стенку капилляров и активно перемещаются в тканях к месту проникновения микробов. Скорость их движения достигает 40 мкм в минуту, что в 3-4 раза превышает диаметр клетки. Выход лейкоцитов в ткани называют миграцией. Контактируя с живыми или мертвыми микробами, с разрушающимися клетками собственного организма или чужеродными частицами, нейтрофилы фагоцитируют их, переваривают и уничтожают за счет собственных ферментов и бактерицидных веществ. Один нейтрофил способен фагоцитировать 20-30 бактерий, но при этом может погибнуть сам (в таком случае бактерии продолжают размножаться);

  • эозинофилы составляют 1-5% всех лейкоцитов. Эозинофилы обладают фагоцитарной способностью, но из-за малого количества в крови их роль в этом процессе невелика. Основная функция эозинофилов — обезвреживание и разрушение токсинов белкового происхождения, чужеродных белков, комплексов антиген- антитело. Эозинофилы фагоцитируют гранулы базофилов и тучных клеток, которые содержат много гистамина; продуцируют фермент гистаминазу, разрушающую поглощенный гистамин.

При аллергических состояниях, глистной инвазии и антибактериальной терапии количество эозинофилов возрастает. Это связано с тем, что при данных состояниях разрушается большое количество тучных клеток и базофилов, из которых освобождается много гистамина, для нейтрализации которого необходимы эозинофилы. Одной из функций эозинофилов является выработка плазминогена, что определяет их участие в процессе фибринолиза;

  • базофилы (0-1% всех лейкоцитов) — самая малочисленная группа гранулоцитов. Функции базофилов обусловлены наличием в них биологически активных веществ. Они, как и тучные клетки соединительной ткани, продуцируют гистамин и гепарин. Количество базофилов нарастает во время регенеративной (заключительной) фазы острого воспаления и немного увеличивается при хроническом воспалении. Гепарин базофилов препятствует свертыванию крови в очаге воспаления, а гистамин расширяет капилляры, что способствует процессам рассасывания и заживления.

Значение базофилов возрастает при различных аллергических реакциях, когда из них и тучных клеток под влиянием комплекса антиген-антитело освобождается гистамин. Он определяет клинические проявления крапивницы, бронхиальной астмы и других аллергических заболеваний.

Количество базофилов резко возрастает при лейкозах, стрессовых ситуациях и слегка увеличивается при воспалении;

  • моноциты составляют 2-4% всех лейкоцитов, способны к амебовидному движению, проявляют выраженную фагоцитарную и бактерицидную активность. Моноциты фагоцитируют до 100 микробов, в то время как нейтрофилы — лишь 20-30. Моноциты появляются в очаге воспаления после нейтрофилов и проявляют максимум активности в кислой среде, в которой нейтрофилы теряют активность. В очаге воспаления моноциты фагоцитируют микробы, а также погибшие лейкоциты, поврежденные клетки воспаленной ткани, очищая очаг воспаления и подготавливая его для регенерации. За эту функцию моноциты называют «дворниками организма».

Они циркулируют до 70 ч, а затем мигрируют в ткани, где образуют обширное семейство тканевых макрофагов. Кроме фагоцитоза, макрофаги участвуют в формировании специфического иммунитета. Поглощая чужеродные вещества, они перерабатывают их и переводят в особое соединение - иммуноген , который совместно с лимфоцитами формирует специфический иммунный ответ.

Макрофаги участвуют в процессах воспаления и регенерации, обмене липидов и железа, обладают противоопухолевым и противовирусным действием. Это связано с тем, что они секретируют лизо- цим, интерферон, фиброгенный фактор, усиливающий синтез коллагена и ускоряющий формирование фиброзной ткани;

  • лимфоциты составляют 20-40% белых кровяных телец. У взрослого человека содержится 10 12 лимфоцитов общей массой 1,5 кг. Лимфоциты, в отличие от всех других лейкоцитов, способны не только проникать в ткани, но и возвращаться обратно в кровь. Они отличаются от других лейкоцитов и тем, что живут не несколько дней, а 20 лет и более (некоторые — на протяжении всей жизни человека).

Лейкопоэз

Лейкопоэз — это процесс образования, дифференцировки и созревания лейкоцитов периферической крови. В нем выделяют мислопоэз и лимфопоэз. Миелопоэз — процесс образования и дифференцировки в красном костном мозге гранулоцитов (нейтрофилов, базофилов и эозинофилов) и моноцитов из ПСГК. Лимфопоэз — процесс образования в красном костном мозге и в лимфоидных органах лимфоцитов. Он начинается образованием из ПГСК в красном костном мозге В-лимфоцитов и Т-лимфоцитов в тимусе и других первичных лимфоидных органах и завершается дифференцировкой и развитием лимфоцитов после воздействия на них антигенов во вторичных лимфоидных органах — селезенке, лимфатических узлах и лимфоидной ткани желудочно-кишечного и дыхательного трактов. Моноциты и лимфоциты способны к дальнейшему дифференцированию и рециркуляции (кровь → тканевая жидкость → лимфа → кровь). Моноциты могут превращаться в тканевые макрофаги, остеокласты и другие формы, лимфоциты — в клетки памяти, хелперы, плазматические и др.

В регуляции образования лейкоцитов важную роль играют продукты разрушения лейкоцитов (лейкопоэтины), которые стимулируют клетки микроокружения ПСГК — Т-клетки, макрофаги, фибробласты и эндотелиальные клетки костного мозга. В ответ клетки микроокружения образуют ряд цитокинов, ростовых и других раннедействующих факторов, стимулирующих лейкопоэз.

В регуляции лейкопоэза участвуют катехоламины (как гормоны мозгового вещества надпочечников, так и нейромедиаторы симпатического отдела АНС). Они стимулируют миелопоэз и вызывают лейкоцитоз за счет мобилизации пристеночного пула нейтрофилов.

Простагландины группы Е, кейлоны (тканеспецифические ингибиторы, вырабатываемые нейтрофилами), интерфероны угнетают образование гранулоцитов и моноцитов. Гормон роста вызывает лейкопению (за счет угнетения образования нейтрофилов). Глюкокортикоиды вызывают инволюцию тимуса и лимфоидной ткани, а также лимфопению и эозинопению. Подавляют гемопоэз гранулоцитов кейлоны, лактоферрин, образуемые зрелыми гранулоцитами. Вызывают лейкопению многие токсические вещества, ионизирующие излучения.

Важным условием нормального лейкопоэза является поступление в организм достаточного количества энергии, белка, незаменимых жирных и аминокислот, витаминов, микроэлементов.

Г-КСФ, другие цитокины и ростовые факторы используются для контроля лейкопоэза и процессов дифференцировки стволовых клеток при их трансплантации с лечебными целями и выращивании искусственных органов и тканей.

Рассматривая под микроскопом кровь, можно обнаружить довольно крупные клетки с ядрами; выглядят они прозрачными. Это – белые кровяные тельца или лейкоциты.


ЛЕЙКОЦИТЫ (от греч. leukos – белый и от греч. kytos — вместилище, здесь — клетка), бесцв. клетки крови человека и животных. Все типы Л. (лимфоциты, моноциты, базофилы, эозинофилы и нейтрофилы) имеют ядро и способны к активному амебоидному движению. В организме поглощают бактерии и отмершие клетки, вырабатывают антитела. В 1 мм3 крови здорового человека содержится 4-9 тыс. Л.

Их количество меняется в зависимости от приема пищи и физической нагрузки. Лейкоциты делятся на гранулоциты (содержащие зернышки, гранулы) и агранулоциты (незернистые лейкоциты).

    Лейкоцитоз (leukocytosis, leukos – белый, cytos – клетка) – патологическая реакция организма, проявляющаяся увеличением содержания лейкоцитов в крови свыше 9´109/л.

  1. Лейкопения (leukopenia, leukos – белый, penia – бедность) – патологическая реакция организма, проявляющаяся уменьшением содержания лейкоцитов в крови ниже 4´ 109/л.

    ГРАНУЛОЦИТЫ, лейкоциты позвоночных ж-ных и человека, содержащие в цитоплазме зерна (гранулы). Образуются в костном мозге. По способности зерен окрашиваться спец. красками делятся на базофилы, нейтрофилы, эозинофилы. Защищают организм от бактерий и токсинов.

    АГРАНУЛОЦИТЫ (незернистые лейкоциты), лейкоциты ж-ных и человека, не содержащие в цитоплазме зерен (гранул). А. — клетки иммунологич. и фагоцитарной системы; делятся на лимфоциты и моноциты.

    Зернитстые лейкоциты делятся на эозинофилы (зерна которых окрашиваются кислыми красителями), базофилы (зерна которых окрашиваются основными красителями), и нейтрофилы (окрашиваются и теми, и другими красителями).

    ЭОЗИНОФИЛЫ, один из типов лейкоцитов. Окрашиваются кислыми красителями, в т. ч. эозином, в красный цвет. Участвуют в аллергич. реакциях организма.

    БАЗОФИЛЫ, клетки, содержащие в цитоплазме структуры, окрашиваемые основными (щелочными) красителями, вид зернистых лейкоцитов крови, а также определ. клетки передней доли гипофиза.

    НЕЙТРОФИЛЫ, (от лат. neuter — ни тот, ни другой и …фил) (микрофаги), один из типов лейкоцитов. Н. способны к фагоцитозу мелких инородных частиц, в т. ч. бактерий, могут растворять (лизировать) омертвевшие ткани.

    Агранулоциты делятся на лимфоциты (клетки с круглым темным ядром) и моноциты (с ядром неправильной формы).

    ЛИМФОЦИТЫ (от лимфа и …цит), одна из форм незернистых лейкоцитов. Выделяют 2 осн. класса Л. В-Л. происходят из фабрициевой сумки (у птиц) или костного мозга; из них формируются плазматич. клетки, вырабатывающие антитела. Т-Л. происходят из тимуса. Л. участвуют в развитии и сохранении иммунитета, а также, вероятно, поставляют питат. в-ва др. клеткам.

    МОНОЦИТЫ (от моно… и …цит), один из типов лейкоцитов. Способны к фагоцитозу; выделяясь из крови в ткани при воспалит. реакциях, функционируют как макрофаги.

    ВИЛОЧКОВАЯ ЖЕЛЕЗА (зобная железа, тимус), центр. орган иммунной системы позвоночных. У большинства млекопитающих расположена в области переднего средостения. Хорошо развита в молодом возрасте. Участвует в формировании иммунитета (продуцирует Т-лимфоциты), в регуляции роста и общего развития организма.

    Лейкоциты сложны по своему строению. Цитоплазма лейкоцитов у здоровых людей обычно розовая, зернистость в одних клетках красная, в других – фиолетовая, в третьих – темно-синяя, а в некоторых окраски нет совсем. Немецкий ученый Пауль Эрлиг обработал мазки крови специальной краской и разделил лейкоциты на зернистые и незернистые. Его исследования углубил и развил Д.Л.Романовский. Он выяснил, какие пути проходят клетки крови в своем развитии. Составленный им раствор для окрашивания крови помог раскрыть многие ее тайны. Это открытие вошло в науку как знаменитый принцип «окраски Романовского». Немецкий ученый Артур Паппенгейн и русский ученый А.Н.Крюков создали стройную теорию кроветворения.

    По количеству содержания в крови лейкоцитов судят о болезни человека. Лейкоциты могут самостоятельно двигаться, проходить через тканевые щели и межклеточные пространства. Самая главная функция лейкоцитов – защитная. Они вступают в борьбу с микробами, поглощают их и переваривают (фагоцитоз); открыт И.И.Мечниковым в 1883 г. Упорными многолетними исследованиями он доказал существование фагоцитоза.

    МАКРОФАГИ (от макро… и …фаг) (полибласты), клетки мезенхимного происхождения у ж-ных и человека, способные к активному захвату и перевариванию бактерий, остатков клеток и др. чужеродных или токсичных для организма частиц (см. Фагоцитоз). К М. относят моноциты, гистиоциты и др.

    МИКРОФАГИ, то же, что нейтрофилы,

    Лейкоцитарная формула процентное соотношение различных форм лейкоцитов в крови (в окрашенном мазке). Изменения лейкоцитарной формулы могут быть типичными для определенного заболевания.

    2. Плазма крови, понятие о сыворотке. Белки плазмы

    Плазма крови – жидкая часть крови. В плазме крови находятся форменные элементы крови (эритроциты, лейкоциты, тромбоциты). Изменения в составе плазмы крови имеют диагностическое значение при различных заболеваниях (ревматизм, сахарный диабет и др.). Из плазмы крови готовят лекарственные препараты (альбумин, фибриноген, гаммаглобулин и др.).\ В плазме крови человека содержится около 100 различных белков. По подвижности при электрофорезе (см. ниже) их можно грубо разделить на пять фракций: альбумин, α 1 -, α 2 -, β- и γ-глобулины . Разделение на альбумин и глобулин первоначально основывалось на различии в растворимости: альбумины растворимы в чистой воде, а глобулины - только в присутствии солей.

    В количественном отношении среди белков плазмы наиболее представлен альбумин (около 45 г/л), который играет существенную роль в поддержании коллоидно-осмотического давления в крови и служит для организма важным резервом аминокислот. Альбумин обладает способностью связывать липофильные вещества, вследствие чего он может функционировать в качестве белка-переносчика длинноцепочечных жирных кислот, билирубина, лекарственных веществ, некоторых стероидных гормонов и витаминов. Кроме того, альбумин связывает ионы Са 2+ и Mg 2+ .

    К альбуминовой фракции принадлежит также транстиретин (преальбумин), который вместе с тироксинсвязывающим глобулином [ТСГл (TBG)] и альбумином транспортирует гормон тироксин и его метаболит иодтиронин.

    В таблице приведены другие свойства важных глобулинов плазмы крови. Эти белки участвуют в транспорте липидов, гормонов, витаминов и ионов металлов, они образуют важные компоненты системы свертывания крови; фракция γ-глобулинов содержит антитела иммунной системы.

    3. Гемопоэз. Факторы эритропоэза, лейкопоэза и тромбоцитопоэза. Понятие о системе крови (Г.Ф. Ланг)

    Гематопоэз это процес генерации зрелых клеток крови, которых за день организм человека производит не много не мало 400 миллиардов. Гематопоэтические клетки происходят от очень небольшого числа тотипотентных стволовых клеток, которые дифференцируются, давая все линии клеток крови. Тотипотентные стволовые клетки наименее специализированы. Более специализированы плюрипотентные стволовые клетки. Они способны дифференцироваться, давая только определенные линии клеток. Различают две популяции плюрипотентных клеток — лимфоидные и миелоидные.


    Эритроциты происходят из полипотентной стволовой клетки костного мозга, которая может дифференцироваться в клетки-предшественицы эритропоэза. Эти клетки морфологически не различаются. Далее происходит дифференцировка клеток-предшественниц в эритробласты и нормобласты, последние в процессе деления теряют ядро, все в большей степени накапливая гемоглобин, образуются ретикулоциты и зрелые эритроциты, которые поступают из костного мозга в периферическую кровь. Железо соединяется с циркулирующим транспортным белком трансферрином, который связывается со специфическими рецепторами на поверхности клеток-предшественниц эритропоэза. Основная часть железа включается в состав гемоглобина, остальная резервируется в виде ферритина. По завершении созревания эритроцит попадает в общий кровоток, срок его жизни составляет примерно 120 дней, затем он захватывается макрофагами и разрушается, главным образом, в селезенке. Железо гема включается в состав ферритина, а также может вновь связываться с трансферрином и доставляться к клетками костного мозга.

    Важнейшим фактором регуляции эритропоэза является эритропоэтин — гликопротеид с молекулярной массой 36000. Он вырабатывается преимущественно в почках под влиянием гипоксии. Эритропоэтин контролирует процесс дифференцироки клеток-предшественниц в эритробласты и стимулирует синтез гемоглобина. На эритропоэз влияют и другие факторы — катехоламины, стероидные гормоны, гормон роста, циклические нуклеотиды. Существенными факторами нормального эритропоэза являются витамин В 12 и фолиевая кислота и достаточное количество железа.

    Лейкопоэз (leucopoesis, leucopoiesis: лейко- + греч. poiesis выработка, образование; син.: лейкогенез, лейкоцитопоэз) - процесс образования лейкоцитов

    Тромбоцитопоэз (thrombocytopoesis; тромбоцит + греч. poiēsis выработка, образование) - процесс образования тромбоцитов.

    Система крови — понятие ввёл российский терапевт Георгий Фёдорович Ланг (1875-1948).

    Обозначает систему, включающую периферическую кровь, органы кроветворения и кроверазрушения, а также нейрогуморальный аппарат их регуляции.

    4. Зубчатый и гладкий тетанус. Понятие о тонусе мышц. Понятие об оптимуме и пессимуме

    В естественных условиях к скелетной мышце из ЦНС поступают не одиночные импульсы, а серия импульсов, следующих друг за другом с определенными интервалами, на которую мышца отвечает длительным сокращением. Такое длительное сокращение мышцы, возникающее в ответ на ритмическое раздражение получило название тетанического сокращения или тетануса. Различают два вида тетануса: зубчатый и гладкий.

    Если каждый последующий импульс возбуждения поступает к мышце в тот период, когда она находится в фазе укорочения, то возникает гладкий тетанус, а если в фазу расслабления — зубчатый тетанус.

    Амплитуда тетанического сокращения превышает амплитуду одиночного мышечного сокращения. Исходя из этого Гельмгольц объяснил процесс тетанического сокращения простой суперпозицией, т. е. простой суммацией амплитуды одного мышечного сокращения с амплитудой другого. Однако в дальнейшем было показано, что при тетанусе имеет место не простое сложение двух механических эффектов, т. к. эта сумма может быть то большей, то меньшей. Н. Е. Введенский объяснил это явление с точки зрения состояния возбудимости мышцы, введя понятие об оптимуме и пессимуме частоты раздражения.

    Оптимальной называется такая частота раздражения, при которой каждое последующее раздражение осуществляется в фазу повышенной возбудимости. Тетанус при этом будет максимальным по амплитуде — оптимальным.

    Пессимальной называется такая частота раздражения, при которой каждое последующее раздражение осуществляется в фазу пониженной возбудимости. Тетанус при этом будет минимальным по амплитуде — пессимальным.

    Тонус
    мышцы — базовый уровень
    активности мышцы, обеспечиваемый её тоническим сокращением .

    В нормальном
    состоянии
    покоя все двигательные единицы различных мышц находятся в хорошо организованной сложной фоновой стохастической активности. В пределах одной мышцы в данный случайный
    момент
    времени одни двигательные единицы возбуждены , другие находятся в состоянии покоя. В следующий случайный момент времени активируются другие двигательные единицы. Таким образом активация двигательных единиц есть стохастическая функция двух случайных переменных — пространства и времени. Такая активность двигательных единиц обеспечивает тоническое сокращение мышцы , тонус данной мышцы и тонус всех мышц двигательной системы . Определенное взаимное отношение тонуса различных групп мышц обеспечивает позу тела .

    В основе управления тонусом мышц и позой тела в покое или при совершении движений решающее значение имеет генеральная стратегия управления в живых
    системах — прогнозирование

    5. Современное биофизическое и физиологическое преставление о механизме возникновения мембранного потенциала и возбуждения

    Каждая клетка в состоянии покоя характеризуется наличием трансмембранной разности потенциалов (потенциала покоя). Обычно разность зарядов между внутренней и внешней поверхностями мембран составляет от -30 до -100 мВ и может быть измерена с помощью внутриклеточного микроэлектрода.

    Создание потенциала покоя обеспечивается двумя основными процессами — неравномерным распределением неорганических ионов между внутри- и внеклеточным пространством и неодинаковой проницаемостью для них клеточной мембраны. Анализ химического состава вне- и внутриклеточной жидкости свидетельствует о крайне неравномерном распределении ионов

    Исследования с применением микроэлектродов показали, что потенциал покоя клетки скелетных мышц лягушки колеблется от -90 до -100 мВ. Такое хорошее соответствие экспериментальных данных теоретическим подтверждает, что потенциал покоя в значительной степени определяется простыми диффузионными потенциалами неорганических ионов.

    Важное значение для возникновения и поддержания мембранного потенциала имеет активный транспорт ионов натрия и калия через клеточную мембрану. При этом перенос ионов происходит против электрохимического градиента и осуществляется с затратой энергии. Активный транспорт ионов натрия и калия осуществляется Na + /K + — АТФазным насосом.

    В некоторых клетках активный транспорт принимает прямое участие в формировании потенциала покоя. Это обусловлено тем, что калий-натриевый насос за одно и то же время больше удаляет ионов натрия из клетки, чем приносит в клетку калия. Это соотношение составляет 3/2. Поэтому калий-натриевый насос называется электрогенным, поскольку он сам создает небольшой, но постоянный ток положительных зарядов из клетки, а потому вносит прямой вклад в формирование отрицательного потенциала внутри нее.

    Мембранный потенциал не является стабильной величиной, поскольку существует много факторов, влияющих на величину потенциала покоя клетки: воздействие раздражителя, изменение ионного состава среды, воздействие некоторых токсинов, нарушение кислородного снабжения ткани и т.д. Во всех случаях, когда мембранный потенциал уменьшается, говорят о деполяризации мембраны, противоположный сдвиг потенциала покоя называют гиперполяризацией.

    Мембранная теория возбуждения — теория, объясняющая возникновение и распространение возбуждения в центральной нервной системе явлением полупроницаемости мембран нейронов, ограничивающих движение ионов одного вида и пропускающих ионы другого вида через ионные каналы.

    6. Скелетная мускулатура как пример пастклеточных структур – симпласт

    Скелетные мышцы входят в структуру опорно-двигательного аппарата, крепятся к костям скелета и при сокращении приводят в движение отдельные звенья скелета.

    Они участвуют в удержании положения тела и его частей в пространстве, обеспечивают движения при ходьбе, беге, жевании, глотании, дыхании и т.д., вырабатывая при этом тепло. Скелетные мышцы обладают способностью возбуждаться под влиянием нервных импульсов. Возбуждение проводится до сократительных структур (миофибрилл), которые, сокращаясь, выполняют двигательный акт — движение или напряжение.

    У человека насчитывается около 600 мышц и большинство из них парные. В каждой мышце различают активную часть (тело мышцы) и пассивную (сухожилие).

    Мышцы, действие которых направлено противоположно, называются антогонистами, однонаправленно — синергистами. Одни и те же мышцы в различных ситуациях могут выступать в том и другом качестве.

    По функциональному назначению и направлению движений в суставах различают мышцы сгибатели и разгибатели, приводящие и отводящие, сфинктеры (сжимающие) и расширители.

    Симпласт – (от греч. syn — вместе и plastos — вылепленный), тип ткани у животных и растений, характеризующийся отсутствием границ между клетками и расположением ядер в сплошной массе цитоплазмы. Напр., поперечнополосатые мышцы у животных, многоядерные протопласты некоторых одноклеточных водорослей.

    7. Регуляция работы сердца (внутриклеточная, гетерометрическая и гомеометрическая). Закон Старлинга. Влияние симпатической и парасимпатической нервной системы на деятельность сердца

    Хотя сердце само генерирует импульсы, вызывающие его сокращение, деятельность сердца контролируется рядом регуляторных механизмов, которые можно разделить на две группы - внесердечные механизмы (экстракардиальные), к которым относится нервная и гуморальная регуляция, и внутрисердечные механизмы (интракардиальные).

    Первый уровень регуляции - экстракардиальный (нервный и гуморальный). Он включает в себя регуляцию главных факторов, определяющих величину минутного объема, частоты и силы сердечных сокращений с помощью нервной системы и гуморальных влияний. Нервная и гуморальная регуляция тесно связаны между собой и образуют единый нервно-гуморальный механизм регуляции работы сердца.

    Второй уровень представлен внутрисердечными механизмами, которые, в свою очередь, могут быть подразделены на механизмы, регулирующие работу сердца на органном уровне, и внутриклеточные механизмы, которые регулируют преимущественно силу сердечных сокращений, а также скорость и степень расслабления миокарда.

    Центральная нервная система постоянно контролирует работу сердца
    посредством нервных импульсов. Внутри полостей самого сердца и в стенках крупных сосудов расположены нервные окончания - рецепторы, воспринимающие колебания давления в сердце и сосудах. Импульсы от рецепторов вызывают рефлексы, влияющие на работу сердца. Существуют два вида нервных влияний на сердце: одни - тормозящие,
    т. е. снижающие частоту сокращений сердца, другие - ускоряющие.

    Импульсы передаются к сердцу по нервным волокнам от нервных центров, расположенных в продолговатом и спинном мозге. Влияния, ослабляющие работу сердца, передаются по парасимпатическим нервам, а усиливающие его работу - по симпатическим.

    Например, у человека учащаются сокращения сердца, когда он быстро встает из положения лежа. Дело в том, что переход в вертикальное положение приводит к накоплению крови в нижней части туловища и уменьшает кровенаполнение верхней части, особенно головного мозга. Чтобы восстановить кровоток в верхней части туловища, от рецепторов сосудов поступают импульсы в центральную нервную систему.

    Оттуда к сердцу по нервным волокнам передаются импульсы, ускоряющие сокращение сердца. Эти факты - наглядный пример саморегуляции деятельности сердца.

    Болевые раздражения также изменяют ритм сердца. Болевые импульсы поступают в центральную нервную систему и вызывают замедление или ускорение сердцебиений. Мышечная работа всегда сказывается на деятельности сердца. Включение в работу большой группы мышц по законам рефлекса возбуждает центр, ускоряющий деятельность сердца. Большое влияние на сердце оказывают эмоции. Под воздействием положительных
    эмоций люди могут совершать колоссальную работу, поднимать тяжести, пробегать большие расстояния. Отрицательные эмоции, наоборот, снижают работоспособность сердца и могут приводить к нарушениям его деятельности.

    Наряду с нервным контролем деятельность сердца регулируется
    химическими веществами, постоянно поступающими в кровь. Такой способ регуляции через жидкие среды,называется гуморальной регуляцией.
    Веществом, тормозящим работу сердца, является ацетилхолин.

    Чувствительность сердца к этому веществу так велика, что в дозе 0,0000001 мг ацетилхолин отчетливо замедляет его ритм. Противоположное действие оказывает другое химическое вещество - адреналин. Адреналин даже в очень малых дозах усиливает работу сердца.

    Например, боль вызывает выделение в кровь адреналина в количестве нескольких микрограммов, который заметно изменяет деятельность сердца. В медицинской практике адреналин вводят иногда прямо в остановившееся сердце, чтобы заставить его вновь сокращаться. Нормальная работа сердца зависит от количества в крови солей калия и кальция. Увеличение содержания солей калия в крови угнетает, а кальция усиливает
    работу сердца. Таким образом, работа сердца изменяется с изменением условий внешней среды и состояния самого организма.

    Закон сердца Старлинга, который показывает зависимость силы сердечных сокращений от степени растяжения миокарда. Этот закон применим не только к сердечной мышце в целом, но и к отдельному мышечному волокну. Увеличение силы сокращения при растяжении кардиомоцита обусловлено лучшим взаимодействием сократительных белков актина и миозина, причем в этих условиях концентрация свободного внутриклеточного кальция (главного регулятора силы сердечных сокращений на клеточном уровне) остается неизменной. В соответствии с законом Старлинга, сила сокращения миокарда тем больше, чем сильнее растянута сердечная мышца в период диастолы под влиянием притекающей крови. Это один из механизмов, обеспечивающих увеличение силы сердечных сокращений адекватное необходимости перекачивать в артериальную систему именно того количества крови, которое притекает к нему из вен.

    8. Кровяное давление в разных отделах сосудистого русла, методика регистрации и определения

    Кровяное давление – гидродинамическое давление крови в сосудах, обусловленное работой сердца и сопротивлением стенок сосудов. Понижается по мере удаления от сердца (наибольшее в аорте, значительно ниже в капиллярах, в венах наименьшее). Нормальным для взрослого человека условно считают артериальное давление 100-140 мм ртутного столба (систолическое) и 70-80 мм ртутного столба (диастолическое); венозное — 60-100 мм водяного столба. Повышенное артериальное давление (гипертония) — признак гипертонической болезни, пониженное (гипотония) сопровождает ряд заболеваний, но возможно и у здоровых людей.

    9. Типы кардиомиоцитов. Морфологические отличия сократительных клеток от проводящих

    Тонкие и длинные

    Эллиптические

    Толстые и длинные

    Длина, мкм

    ~ 60 ё140

    ~ 20

    ~ 150 ё200

    Диаметр, мкм

    ~ 20

    ~ 5 ё6

    ~ 35 ё40

    Объем, мкм 3

    ~ 15 ё45000

    ~ 500

    135000 ё250000

    Наличие поперечных трубочек

    Много

    Встречаются редко или отсутствуют

    Отсутствуют

    Наличие вставочных дисков

    Многочисленные щелевые соединения клеток из конца в конец, обеспечивающие высокую скорость взаимодействия .

    Боковые соединения клеток или соединения из конца в конец.

    Многочисленные щелевые соединения клеток из конца в конец, обеспечивающие высокую скорость взаимодействия.

    Общий вид в составе мышцы

    Большое число митохондрий и саркомеров .

    Пучки мышцы предсердий разделены обширными областями коллагена.

    Меньше саркомеров, меньшая поперечная исчерченность

    10. Перенос газов кровью. Кривая диссоциации оксигемоглобина. Особенности транспорта углекислого газа

    Перенос (транспорт) дыхательных газов , кислорода, O2 и двуокиси углерода, СO2 с кровью — это второй из трёх этапов дыхания : 1. внешнее дыхание , 2. транспорт газов кровью, 3. клеточное дыхание .

    Конечные этапы дыхания, тканевое
    дыхание , биохимическое окисление являются частью метаболизма . В процессе метаболизма образуются конечные продукты , главным из которых является двуокись углерода . Условием
    нормальной жизнедеятельности является своевременное удаление двуокиси углерода из организма.

    Механизмы
    управления переносом двуокиси углерода взаимодействуют с механизмами регулирования
    кислотно-щелочного равновесия крови, регулированием внутренней среды организма в целом .

    11. Дыхание в условиях повышенного и пониженного атмосферного давления. Кессонная болезнь. Горная болезнь

    Кессонная болезнь – декомпрессионное заболевание, возникающее большей частью после кессонных и водолазных работ при нарушении правил декомпрессии (постепенного перехода от высокого к нормальному атмосферному давлению). Признаки: зуд, боли в суставах и мышцах, головокружение, расстройства речи, помрачение сознания, параличи. Применяют шлюз лечебный.

    Горная болезнь – развивается в условиях высокогорья вследствие снижения парциального напряжения атмосферных газов, главным образом кислорода. Может протекать остро (разновидность высотной болезни) или хронически, проявляясь сердечной и легочной недостаточностью и другими симптомами.

    12. Краткая характеристика стенок воздухоносных путей. Типы бронхов, морфофункциональная характеристика мелких бронхов

    Бронхи (от греч. brónchos - дыхательное горло, трахея), ветви дыхательного горла у высших позвоночных (амниот) и человека. У большинства животных дыхательное горло, или трахея , делится на два главных бронхов. Лишь у гаттерии продольная борозда в заднем отделе дыхательного горла намечает парные Б., не имеющие обособленных полостей. У остальных пресмыкающихся, а также у птиц и млекопитающих Б. хорошо развиты и продолжаются внутри лёгких. У пресмыкающихся от главных Б. отходят Б. второго порядка, которые могут делиться на Б. третьего, четвёртого порядка и т.д.; особенно сложно деление Б. у черепах и крокодилов. У птиц Б. второго порядка соединяются между собой парабронхами - каналами, от которых по радиусам ответвляются так называемые бронхиоли, ветвящиеся и переходящие в сеть воздушных капилляров. Бронхиоли и воздушные капилляры каждого парабронха сливаются с соответствующими образованиями др. парабронхов, образуя, таким образом, систему сквозных воздушных путей. Как главные Б., так и некоторые боковые Б. на концах расширяются в так называемые воздушные мешки . У млекопитающих от каждого главного Б. отходят вторичные Б., которые делятся на всё более мелкие ветви, образуя так называемое бронхиальное дерево. Самые мелкие ветви переходят в альвеолярные ходы, оканчивающиеся альвеолами . Помимо обычных вторичных Б., у млекопитающих различают предартериальные вторичные Б., отходящие от главных Б. перед тем местом, где через них перекидываются лёгочные артерии. Чаще имеется только один правый предартериальный Б., который у большинства парнокопытных отходит непосредственно от трахеи. Фиброзные стенки крупных Б. содержат хрящевые полукольца, соединённые сзади поперечными пучками гладких мышц. Слизистая оболочка Б. покрыта мерцательным эпителием. В мелких Б. хрящевые полукольца заменены отдельными хрящевыми зёрнами. В бронхиолях хрящей нет, и кольцеобразные пучки гладких мышц лежат сплошным слоем. У большинства птиц первые кольца Б. участвуют в образовании нижней гортани.

    У человека деление трахеи на 2 главных Б. происходит на уровне 4-5-го грудных позвонков. Каждый из Б. затем делится на всё более мелкие, заканчиваясь микроскопически малыми бронхиолями, переходящими в альвеолы лёгких . Стенки Б. образованы гиалиновыми хрящевыми кольцами, препятствующими спадению Б., и гладкими мышцами; изнутри Б. выстланы слизистой оболочкой. По ходу разветвлений Б. расположены многочисленные лимфатические узлы, принимающие лимфу из тканей лёгкого. Кровоснабжение Б. осуществляется бронхиальными артериями, отходящими от грудной аорты, иннервация - ветвями блуждающих, симпатических и спинальных нервов.

    13. Обмен жиров и его регуляция

    Жиры важный источник энергии в организме, необходимая составная часть клеток. Излишки жиров могут депонироваться в организме. Откладываются они главным образом в подкожной жировой клетчатке, сальнике, печени и других внутренних органах. В желудочно-кишечном тракте жир распадается на глицерин и жирные кислоты, которые всасываются в тонких кишках. Затем он вновь синтезируется в клетках слизистой кишечника. Образовавшийся жир качественно отличается от пищевого и является специфическим для человеческого организма. В организме жиры могут синтезироваться также из белков и углеводов. Жиры, поступающие в ткани из кишечника и из жировых депо, путем сложных превращений окисляются, являясь, таким образом, источником энергии. При окислении 1 г жира освобождается 9,3 ккал энергии. Как энергетический материал жир используется при состоянии покоя и выполнении длительной малоинтенсивной физической работы. В начале напряженной мышечной деятельности окисляются углеводы. Но через некоторое время, в связи с уменьшением запасов гликогена, начинают окисляться жиры и продукты их расщепления. Процесс замещения углеводов жирами может быть настолько интенсивным, что 80% всей необходимой в этих условиях энергии освобождается в результате расщепления жира. Жир используется как пластический и энергетический материал, покрывает различные органы, предохраняя их от механического воздействия. Скопление жира в брюшной полости обеспечивает фиксацию внутренних органов. Подкожная жировая клетчатка, являясь плохим проводником тепла, защищает тело от излишних теплопотерь. Пищевой жир содержит некоторые жизненно важные витамины. Обмен жира и липидов в организме сложен. Большую роль в этих процессах играет печень, где осуществляется синтез жирных кислот из углеводов и белков. Обмен липидов тесно связан с обменом белков и углеводов. При голодании жировые запасы служат источником углеводов. Регуляция жирового обмена. Обмен липидов в организме регулируется центральной нервной системой. При повреждении некоторых ядер гипоталамуса жировой обмен нарушается и происходит ожирение организма или его истощение.

    14. Обмен белков. Азотистое равновесие. Положительный и отрицательный баланс азота. Регуляция обмена белков

    Белки - необходимый строительный материал протоплазмы клеток. Они выполняют в организме специальные функции. Все ферменты, многие гормоны, зрительный пурпур сетчатки, переносчики кислорода, защитные вещества крови являются белковыми телами. Белки состоят из белковых элементов - аминокислот, которые образуются при переваривании животного и растительного белка и поступают в кровь из тонкого кишечника. Аминокислоты делятся на незаменимые и заменимые. Незаменимыми называются те, которые организм получает только с пищей. Заменимые могут быть синтезированы в организме из других аминокислот. По содержанию аминокислот определяется ценность белков пищи. Вот почему белки, поступающие с пищей, делятся на две группы: полноценные, содержащие все незаменимые аминокислоты, и неполноценные, в составе которых отсутствуют некоторые незаменимые аминокислоты. Основным источником полноценных белков служат животные белки. Растительные белки (за редким исключением) неполноценные. В тканях и клетках непрерывно идет разрушение и синтез белковых структур. В условно здоровом организме взрослого человека количество распавшегося белка равно количеству синтезированного. Так как баланс белка в организме имеет большое практическое знамение, разработано много методов его изучения. Регуляция белкового равновесия осуществляется гуморальным и нервным путями (через гормоны коры надпочечников и гипофиза, промежуточный мозг).

    15. Теплоотдача. Способы отдачи тепла с поверхности тепла

    Способность организма человека сохранять постоянную температуру обусловлена сложными биологическими и физико-химическими процессами терморегуляции. В отличие от холоднокровных (пойкилотермных) животных, температура тела теплокровных (гамойотермных) животных при колебаниях температуры внешней среды поддерживается на определенном уровне, наиболее выгодно для жизнедеятельности организма. Поддержание теплового баланс осуществляется благодаря строгой соразмерности в образовании тепла и в ее отдаче. Величина теплообразования зависит от интенсивности химических реакций, характеризующих уровень обмена веществ. Теплоотдача регулируется преимущественно физическими процессами (теплоизлучение, теплопроведение, испарение).

    Температура тела человека и высших животных поддерживается на относительно постоянном уровне, несмотря на колебания температуры внешней среды. Это постоянство температуры тела носит название изотермии. Изотермия в процессе онтогенеза развивается постепенно.

    Постоянство температуры тела у человека может сохранят лишь при условии равенства теплообразования и теплопотери организма. Это достигается посредством физиологических терморегуляции, которую принято разделять на химическую и физическую. Способность человека противостоять воздействию тепла и холода, сохраняя стабильную температуру тела, имеет известные пределы. При чрезмерно низкой или очень высокой температуре среды защитные терморегуляционные механизмы оказывав недостаточными, и температура тела начинает резко падать или повышаться. В первом случае развивается состояние гипотермии, втором- гипертермии.

    Образование тепла в организме происходит главным образом в результате химических реакций обмена веществ. При окислении пищевых компонентов и других реакций тканевого метаболизма образуется тепло. Величина теплообразования находится в тесной связи уровнем метаболической активности организма. Поэтому теплопродукцию называют также химической терморегуляцией.

    Химическая терморегуляция имеет особо важное значение поддержания постоянства температуры тела в условиях охлаждения При понижении температуры окружающей среды происходит увеличение интенсивности обмена веществ и, следовательно, теплобразования. У человека усиление теплообразования отмечается в 1 случае, когда температура окружающей среды становится ниже оптимальной температуры или зоны комфорта. В обычной легко одежде эта зона находится в пределах 18-20°, а для обнаженного человека -28°С.

    Суммарное теплообразование в организме происходит в ходе химических реакций обмена веществ (окисление, гликолиз), что ее составляет так называемое первичное тепло и при расходов энергии макроэргических соединений (АТФ) на выполнение раб (вторичное тепло). В виде первичного тепла рассеивается 60-70% энергии. Остальные 30-40% после расщепления АТФ обеспечивают работу мышц, различные процессы су секреции и др. Но и при этом та или иная часть энергии переход затем в тепло. Таким образом, и вторичное тепло образуется вследствие экзотермических химических реакций, а при сокращении мышечных волокон-в результате их трения. В конечном итоге переходит в тепло или вся энергия, или подавляющая ее часть.

    Наиболее интенсивное теплообразование в мышцах при их сокращении Относительно небольшая двигатели активность ведет к увеличению теплообразования в 2 раза, а тяжелая работа - в 4-5 раз и более. Однако в этих условиях существенно возрастают потери тепла с поверхности тела.

    При продолжительном охлаждении организма возникают непроизвольные периодические сокращения скелетной мускулатуры. При этом почти вся метаболическая энергия в мышце освобождается в виде тепла. Активация в условиях холода симпатической нервной системы стимулирует липолиз в жировой ткани. В кровоток выделяются и в последующем окисляются с образованием большого количества тепла свободные жирные кислоты. Наконец, значение теплопродукции связано с усилением функций надпочечников и щитовидной железы. Гормоны этих желез, усиливая обмен веществ, вызывает повышенное теплообразование. Следует также иметь в виду, что все физиологические механизмы, которые регулируют окислительные процессы, влияют в то же время и на уровень теплообразования.

    Отдача тепла организмом осуществляется путем излучения и испарения.

    Излучением теряется примерно 50-55% шла в окружающую среду путем лучеиспускания за счет инфракрасной части спектра. Количество тепла, рассеиваемого организмом (окружающую среду с излучением, пропорционально площади поверхности частей тела, которые соприкасаются с воздухом, и разностью средних значений температур кожи и окружающей среды. Отдача шла излучением прекращается, если выравнивается температура кожи и окружающей среды.

    Теплопроведение может происходить путем кондукции и испарения. Кондукцией тепло теряется при непосредственном контакте участков тела человека с другими физическими средами. При этом количество теряемого тепла пропорционально разнице средних температур контактирующих поверхностей и времени теплового контакта. Конвекция- способ теплоотдачи организма, осуществляемый путем переноса тепла движущимися частицами воздуха.

    Конвекцией тепло рассеивается при обтекании поверхности тела потоком воздуха с более низкой температурой, чем температура воздуха. Движение воздушных потоков (ветер, вентиляция) увеличивает количество отдаваемого тепла. Путем теплопроведения организм теряет 15-20% тепла, при этом конвекция представляет более обширный механизм теплоотдачи, чем кондукция.

    Теплоотдача путем испарения - это способ рассеивания организмом тепла (около 30%) в окружающую среду за счет его затраты на испарение пота или влаги с поверхности кожи и слизистых дыхательных путей. При температуре внешней среды 20″ испарение влаги у человека составляет 600-800 г в сутки. При переходе в 1 г воды организм теряет 0.58 ккал тепла. Если внешняя темпер превышает среднее значение температуры кожи, то организм отдает во внешнюю среду тепло излучением и проведением, а нас поглощает тепло извне. Испарение жидкости с поверхности происходит при влажности воздуха менее 100%.
    Микроскопические грибы как основные продуценты различных микотоксинов ОБЩЕЕ ПРЕДСТАВЛЕНИЕ О СТРОЕНИИ И ФУНКЦИЯХ НЕРВНОЙ СИСТЕМЫ Функции финансов торговли

    2014-11-07

Со школьной скамьи многие помнят, что кровь представляет собой жидкую подвижную плазму, в которой во взвешенном состоянии находятся тысячи клеток - красных кровяных телец, называющихся эритроцитами, неокрашенных лейкоцитов, фрагментов цитоплазмы, или тромбоцитов. Строение эритроцитов, лейкоцитов и тромбоцитов имеет существенные различия, что определяет их роль в организме млекопитающих, и в частности человека. Кровь по цвету красная, потому что эритроцитов в ней значительно больше, чем всех других вместе взятых клеток. Сами эритроциты делает красными содержащийся в них гемоглобин - железосодержащий белок. Их главная роль заключается в транспортировке кислорода и углекислого газа. Тромбоциты, коих значительно меньше, чем эритроцитов, обеспечивают тромбирование поврежденных сосудов. Лейкоцитов в плазме тоже совсем немного, но их роль трудно переоценить. По морфологическим признакам их делят на несколько групп. Строение и значение лейкоцитов в каждой группе несколько различное, но все вместе они защищают организм от внедрения и патологической деятельности вредоносных агентов. Изучением деятельности этих маленьких белых телец крови внесли И. Мечников и П. Эрлих, за что оба ученых были награждены Нобелевской премией.

Общие сведения

В свежей крови лимфоциты не окрашены, за что они получили второе наименование - белые кровяные тельца. От общего объема эритроцитов их в плазме всего около 0,15 %, но это число непостоянно. Особенно резко оно меняется в сторону увеличения при попадании в организм раздражающего агента - вирусов, бактерий, других вредоносных живых организмов и неживых частиц. А в течение суток число лейкоцитов меняется не только у заболевших людей, но и у здоровых, например после еды, после высоких нагрузок, ближе к вечеру и так далее. На вопрос о том, каково строение и значение лейкоцитов в организме, однозначного ответа нет, потому что термином «лейкоцит» обозначается целая группа сходных по морфологическим признакам клеток. Представители каждой имеют и различия, и сходства.

Все лейкоциты наделены способностью перемещаться в направлении раздражителя, что носит название хемотаксиса. Они образуются в лимфоузлах и в костном мозге. Этот процесс называется лейкопоэзом. Если в крови по каким-либо причинам появляется слишком много лейкоцитов, это состояние носит название лейкоцитоз. Если лимфоцитов в крови меньше нормы, такое состояние называется лейкопенией.

Группы лейкоцитов

Чтобы точно сказать, каково строение и значение лейкоцитов в организме людей, нужно сперва рассказать, какие виды белых кровяных телец известны на сегодняшний момент.

В целом их делят на два вида:

  • Зернистые.
  • Незернистые.

Зернистые лейкоциты имеют другое название - гранулоциты. Строение лейкоцитов данной группы имеет общие отличительные признаки: крупное ядро и зернистую цитоплазму. Гранулоциты, в свою очередь, делятся на группы:

  • нейтрофилы;
  • базофилы;
  • эозинофилы.

Незернистые лейкоциты по-другому называются агранулоцитами. Их ядро простое, несегментированное, а цитоплазма - без специфической зернистости.

Агранулоциты делятся на группы:

  • моноциты;
  • лимфоциты.

Рассмотрим их подробнее.

Нейтрофилы

Эти кровяные клетки получили такое название за свою способность окрашиваться и кислым красителем эозином, и основными красителями, например метиленовым синим. В общем объеме всех лейкоцитов их от 48 до 78%. Живут они до 8 дней. Строение лейкоцитов данной группы, в зависимости от их возраста (стадии развития) меняется. Образуются нейтрофилы из нейтрофильных промиелоцитов, последовательно превращаясь в миелоциты, метамиелоциты, палочкоядерные нейтрофилы и, наконец, в сегментноядерные нейтрофилы.

На завершающей стадии в каждом нейтрофиле есть крупное ядро из 3, максимум 5 сегментов, соединяющихся тоненькими перемычками. Размер зрелой клетки - до 12 мкм. Структура цитоплазмы нейтрофила неоднородна. Внутри она заполнена органеллами и небольшим количеством митохондрий. Поверхностная часть цитоплазмы имеет в своем составе гранулы гликогена, микротрубочки и филаменты, позволяющие нейтрофилу перемещаться в нужном направлении. Гранулы представлены двумя типами:

  • специфические (содержат бактерицидные вещества муромидазу, фосфатазу, лактоферрин);
  • азурофильные (содержат лизосомальные ферменты и миелопероксидазу).

Роль нейтрофилов

Особенности строения лейкоцитов - нейтрофилов позволяют им выполнять следующие функции в организме всех млекопитающих:

1. Защитную.

Нейтрофилы по своей сути являются микрофагами, то есть могут захватывать и уничтожать различные патогенные микроорганизмы и частицы, проникшие в кровь. Все виды лейкоцитов способны просачиваться сквозь эндотелий капилляров и амебоподобным образом двигаться к раздражителю. Достигнув его, нейтрофилы окружают «врага» цитоплазмой. В дальнейшем возможно несколько сюжетов развития событий:

  • ферментативный (отщепление железа от ферментов микробов, чем вызывается их гибель);
  • неферментативный (катионные белки увеличивают проницаемость мембран врагов, в результате их содержимое изливается).

2. Транспортную.

На своей поверхности нейтрофилы адсорбируют аминокислоты, некоторые ферменты и переносят их в нужное организму место.

Базофилы

Такое название дано клеткам за то, что они при окрашивании по Романовскому способны хорошо поглощать основные красители и не реагировать на кислый краситель эозин. Строение лейкоцитов базофильной группы имеет свои особенности.

Так, эти клетки сравнительно крупные, в диаметре достигают 9-12 мкм, вырабатываются в костном мозге и живут до 2 суток. В крови их примерно 1 % от общей массы лейкоцитов. Их ядро по форме напоминает боб, нечетко разделенный на 3 дольки, а в цитоплазме содержатся все формы органелл - рибосомы, митохондрии, актиновые филаменты, аппарат Гольджи, гликоген, эндоплазматическая сеть. Базофилы могут просачиваться сквозь стенки капилляров и жить вне кровеносной системы. Своим строением они напоминают тучные клетки и являются их близкими «родственниками». Разница заключается в том, что базофилы выходят из костного мозга уже полностью сформированными, а тучные клетки попадают в кровь незрелыми.

Роль базофилов

Строение лейкоцитов - базофилов определяет их функции в организме:

  1. Защитная (блокируют яды, препятствуя их распространению по телу, способны выполнять фагоцитоз).
  2. Транспортная (на их поверхности располагается иммуноглобулин Е и другие белковые соединения.
  3. Синтетическая (вырабатывают гистамин, гепарин).

Базофилы способны к дегрануляции (при этом в кровь выходит много гистамина, лейкотриенов, гепарина, серотонина, простагландинов). У человека это вызывает аллергический ответ на различные раздражители.

Дегрануляция провоцирует мгновенное усиление тока крови и лучшую проницаемость сосудов, что способствует скорейшему достижению другими лейкоцитами раздражающего агента с его последующим уничтожением. Многие ученые склонны считать, что мобилизация других лейкоцитов на борьбу с «врагом», попавшим в кровь, - это основная функция базофилов.

Эозинофилы

Этот вид лейкоцитов так назван благодаря тому, что при окрашивании по Романовскому они реагируют на эозин (кислый краситель). Строение и функции лейкоцитов эозинофильной группы имеет весомые отличия от двух предыдущих.

Число этих клеток в крови не должно превышать 5% от массы всех лейкоцитов. В эозинофилах четко просматривается ядро из двух соединенных перемычкой сегментов. В цитоплазме имеются органеллы и гранулы двух видов - специфические и азурофильные. При этом специфические почти полностью заполняют цитоплазму. В своем центре они имеют кристаллоид, включающий белок, богатый аргинином, гидролитические лизосомные ферменты, гистаминазу, пероксидазу, катионный эозинофильный белок, фосфолипазу D, коллагеназу, кетапсин. В крови эти клетки живут до двух недель.

Роль эозинофилов

Лимфоциты

Примерно 30- 40 % от объема всех лейкоцитов приходится на лимфоциты. Каково строение и значение лейкоцитов этой группы? Они представляют собой шаровидные тела с очень крупным ядром и тонким ободком цитоплазмы, в которой присутствует минимум органелл, но есть цитоплазматические отростки.

Главная роль лимфоцитов состоит в обеспечении гуморального и клеточного иммунитета. Также они регулируют деятельность других клеток.

Различают несколько типов лимфоцитов:


Моноциты

Это крупные клетки шаровидной формы диаметром до 20 мкм. Внутри у них имеется полиморфное несегментированное ядро с хроматиновой сетью и цитоплазма со множеством лизосом. Живут они не более 2 суток. Строение лейкоцитов этой группы обуславливает их основную роль - они являются макрофагами, способными захватить 100 и более микроорганизмов. При этом моноциты в размерах значительно увеличиваются. Эти клетки крови особенно большую работу выполняют при хронических заболеваниях в то время, как, например, нейтрофилы более активны при острых инфекциях. Кроме фагоцитоза, моноциты способны вырабатывать антитела и синтезировать интерферон, лизоцим.

Тромбоциты

Каково строение лейкоцитов в организме, мы разобрали. Теперь рассмотрим, что представляют собой тромбоциты. Они, как и лейкоциты, образуются в костном мозгу. Их «прародителями» являются мегакариоциты оксифильные, размеры которых для клеток просто гигантские - 70 мкм. Одна такая крупная клетка способна продуцировать более 10 тысяч тромбоцитов, размеры которых не превышают 4 мкм. По своей сути они представляют собой фрагменты цитоплазмы мегакариоцитов, заключенные в мембрану. Тромбоциты не имеют ядра, а их формы несколько отличаются, в зависимости от возраста. Так, существуют юные, зрелые и старые тромбоциты. Кроме того, есть формы раздражения этих частиц и небольшой процент дегенеративных форм. Главная роль тромбоцитов заключается в образовании сгустков крови (тромбов) в местах, где произошел разрыв кровеносного сосуда.

Эритроциты

Строение лейкоцитов и тромбоцитов позволяет им выполнять защиту организма от вредоносных агентов и от потери крови. Роль эритроцитов совсем другая. Они служат для разноса из легких по органам и тканям кислорода, и для обратной транспортировки в легкие углекислого газа. Их строение довольно простое. Эритроциты внешне похожи на круглые диски с вогнутой с двух сторон поверхностью. Это несколько увеличивает площадь соприкосновения и тем самым облегчает газообмен. Внутри эритроциты заполнены цитоплазмой, 98 % которой составляет гемоглобин. Размеры этих кровяных клеток составляют 10 мкм, но они настолько эластичные, что могут просачиваться сквозь поры сосудов, размеры которых всего около 3 мкм. Вырабатываются эритроциты в костном мозгу, живут около 3 месяцев, после чего их поглощают лейкоциты - макрофаги.

Материалы публикуются для ознакомления, и не являются предписанием к лечению! Рекомендуем обратиться к врачу-гематологу в вашем лечебном учреждении!

Лейкоциты — клетки округлой формы размером 7-20 мк, состоящие из ядра, однородной или зернистой протоплазмы. Их называют белыми кровяными тельцами за отсутствие цвета. А также гранулоцитами за счет наличия в цитоплазме гранул или агранулоцитами за отсутствие зернистости. В спокойном состоянии лейкоциты проникают сквозь стенки сосудов и выходят из кровотока.

Из-за бесцветной цитоплазмы, непостоянной формы и амебовидного движения лейкоциты называют белыми клетками (или амебами), «плавающими» в лимфе или плазме крови. Скорость лейкоцитов бывает в пределах 40 мкм/мин.

Важно! Взрослый человек по утрам в крови на голодный желудок имеет соотношение лейкоцитов в 1 мм — 6000-8000. Меняется их численность в течение суток в связи с другим функциональным состоянием. Резкое увеличение уровня в крови лейкоцитов — это лейкоцитоз, снижение концентрации — лейкопения.

Главные функции лейкоцитов

Селезенка, лимфоузлы, красный мозг в костях — это органы, где образуются лейкоциты. Химические элементы раздражают и заставляют лейкоциты покидать кровяное русло, проникать сквозь эндотелий капилляров, чтобы быстрее добраться до источника раздражения. Это могут быть остатки жизнедеятельности микробов, распадающихся клеток, все, что можно назвать инородными телами или комплексами антигенов-антител. Белые клетки применяют положительный хемотаксис по отношению к раздражителям, т.е. они обладают двигательной реакцией.

  • формируется иммунитет: специфический и неспецифический;
  • неспецифический иммунитет формируется при участии образующихся антитоксических веществ и интерферона;
  • начинается выработка специфических антител.

Лейкоциты с помощью собственной цитоплазмы окружают и специальными ферментами переваривают инородное тело, что называется фагоцитозом.

Важно! Одним лейкоцитом переваривается 15-20 бактерий. Лейкоциты способны выделять важные защитные вещества, заживляющие раны и с фагоцитарной реакцией, а также антитела с антибактериальными и антитоксическими свойствами.

Кроме защитной функции лейкоцитов, существуют у них и другие важные функциональные обязанности. А именно:

  • Транспортные. Амебообразные белые клетки адсорбируют из лизосомы протеазу с пептидазой, диастазой, липазой, дезоксирибронуклеазой и переносят эти ферменты на себе к проблемным местам.
  • Синтетические. При недостатке в клетках активных веществ: гепарина, гистамина и прочих, белые клетки синтезируют недостающие для жизни и деятельности всех систем и органов биологические вещества.
  • Гемостатические. Лейкоциты помогают крови быстро свернуться лейкоцитарными тромбопластинами, которые они выделяют.
  • Санитарные. Белые клетки крови способствуют рассасыванию клеток в тканях, погибших во время травм, за счет тех ферментов, что переносят на себе из лизосом.

Сколько длится жизнь

Живут лейкоциты — 2-4 дня, и процессы их разрушения происходят в селезенке. Короткая продолжительность жизни лейкоцитов объясняется попаданием внутрь организма множества тел, принятых иммунитетом за чужеродные. Фагоцитами они быстро поглощаются. Поэтому увеличиваются их размеры. Это приводит к разрушению и освобождению вещества, вызывающего местное воспаление в сопровождении отека, повышенной температуры и гиперемии в пораженном участке.

Эти вещества, что вызвали воспалительную реакцию, начинают привлекать к эпицентру действующие свежие лейкоциты. Они продолжают уничтожать вещества и поврежденные клетки, растут и также гибнут. Место, где скопились погибшие белые клетки, начинает гноиться. Тогда подключаются лизосомные ферменты, и включается лейкоцитарная санитарная функция.

Строение лейкоцитов

Клетки агранулоцитов

Лимфоциты

Лимфобласт в костном мозге продуцирует округлой формы и разных размеров, с крупным круглым ядром лимфоциты. Они относятся к иммунокомпетентным клеткам, поэтому созревают по особому процессу. Они отвечают за создание иммунитета с разнообразными иммунными реакциями. Если их окончательное созревание произошло в тимусе, тогда клетки называют Т-лимфоцитами, если в лимфоузлах или селезенке — В-лимфоцитами. Размер первых (их 80%) меньше размера вторых клеток (их 20%).

Продолжительность жизни клеток — 90 дней. Они активно участвуют в реакциях иммунитета и защищают организм, используя одновременно также фагоцитоз. Ко всем болезнетворным вирусам и патологическим бактериям клетки проявляют неспецифическую резистентность — одинаковое воздействие.