К проявлениям действия абиотических факторов. Основные абиотические факторы


Цель : раскрыть особенности абиотических факторов среды и рассмотреть их влияние на живые организмы.

Задачи : познакомить учащихся с экологическими факторами среды; раскрыть особенности абиотических факторов, рассмотреть влияние температуры, света и увлажнения на живые организмы; выделить различные группы живых организмов в зависимости от влияния на них разных абиотического фактора; выполнить практическое задание по определению групп организмов, в зависимости от абиотического фактора.

Оборудование : компьютерная презентация, задания по группам с картинками растений и животных, практическое задание.

ХОД УРОКА

Все живые организмы, населяющие Землю, испытывают влияние экологических факторов среды.

Экологические факторы – это отдельные свойства или элементы среды, воздействующие прямо или косвенно на живые организмы, хотя бы на протяжении одной из стадий индивидуального развития. Экологические факторы многообразны. Существует несколько квалификаций, в зависимости от подхода. Это по влиянию на жизнедеятельность организмов, по степени изменчивости во времени, по длительности действия. Рассмотрим классификацию экологических факторов, основанную на их происхождении.

Мы рассмотрим влияние первых трех абиотических факторов среды, так как их влияние более значительно – это температура, свет и влажность.

Например, у майского жука личиночная стадия проходит в почве. На него влияют абиотические факторы среды: почва, воздух, косвенно влажность, химический состав почвы – совсем не влияет свет.

Например, бактерии способны выжить в самых экстремальных условиях – их находят в гейзерах, сероводородных источниках, очень соленой воде, на глубине Мирового океана, очень глубоко в почве, во льдах Антарктиды, на самых высоких вершинах (даже Эвересте 8848 м), в телах живых организмов.

ТЕМПЕРАТУРА

Большинство видов растений и животных приспособлены к довольно узкому диапазону температур. Некоторые организмы, особенно в состоянии покоя или анабиоза способны выдерживать довольно низкие температуры. Колебание температуры в воде обычно меньше, чем на суше, поэтому пределы устойчивости к температуре у водных организмов хуже, чем у наземных. От температуры зависит интенсивность обмена веществ. В основном организмы живут при температуре от 0 до +50 на поверхности песка в пустыни и до – 70 в некоторых областях Восточной Сибири. Средний диапазон температур находится в пределах от +50 до –50 в наземных местообитаниях и от +2 до +27 – в Мировом океане. Например, микроорганизмы выдерживают охлаждение до –200, отдельные виды бактерий и водорослей могут жить и размножаться в горячих источниках при температуре + 80, +88.

Различают животные организмы :

  1. с постоянной температурой тела (теплокровные);
  2. с непостоянной температурой тела (хладнокровные).

Организмы с непостоянной температурой тела (рыбы, земноводные, пресмыкающиеся)

В природе температура не постоянна. Организмы, которые живут в умеренных широтах и подвергаются колебанию температур, хуже переносят постоянную температуру. Резкие колебания – зной, морозы – неблагоприятны для организмов. Животные выработали приспособления для борьбы с охлаждением и перегревом. Например, с наступлением зимы растения и животные с непостоянной температурой тела впадают в состояние зимнего покоя. Интенсивность обмена веществ у них резко снижается. При подготовке к зиме в тканях животных запасается много жира, углеводов, количество воды в клетчатке уменьшается, накапливаются сахара, глицерин, препятствующий замерзанию. Так морозостойкость зимующих организмов увеличивается.

В жаркое время года наоборот, включаются физиологические механизмы, защищающие от перегрева. У растений усиливается испарение влаги через устьица, что приводит к снижению температуры листьев. У животных усиливается испарение воды через дыхательную систему и кожу.

Организмы с постоянной температурой тела. (птицы, млекопитающие)

У этих организмов произошли изменения во внутреннем строении органов, что способствовало их приспособленности к постоянной температуре тела. Это, например – 4-х камерное сердце и наличие одной дуги аорты, обеспечивающие полное разделение артериального и венозного кровотока, интенсивный обмен веществ благодаря снабжению тканей артериальной кровью, насыщенной кислородом, перьевой или волосяной покров тела, способствующий сохранению тепла, хорошо развитая нервная деятельность). Все это позволило представителям птиц и млекопитающим сохранять активность при резких перепадах температур и освоить все места обитания.

В природных условиях температура очень редко держится на уровне благоприятности для жизни. Поэтому у растений и животных возникает специальные приспособления, которые ослабляют резкие колебания температуры. У животных, например слонов большая ушная раковина, по сравнению с его предком мамонтом, живущем в холодном климате. Ушная раковина кроме органа слуха выполняет функцию терморегулятора. У растений для защиты от перегрева появляется восковой налет, плотная кутикула.

СВЕТ

Свет обеспечивает все жизненные процессы, протекающие на Земле. Для организмов важна длина волны воспринимаемого излучения, его продолжительность и интенсивность воздействия. Например, у растений уменьшение длины светового дня и интенсивность освещения приводит к осеннему листопаду.

По отношению к свету растения делят на:

  1. светолюбивые – имеют мелкие листья, сильно ветвящиеся побеги, много пигмента – хлебные злаки. Но увеличение интенсивности освещения сверх оптимального подавляет фотосинтез, поэтому в тропиках трудно получать хорошие урожаи.
  2. тенелюбивы е – имеют тонкие листья, крупные, расположены горизонтально, с меньшим количеством устьиц.
  3. теневыносливые – растения способные обитать в условиях хорошего освещения, так и в условиях затенения

Важную роль в регуляции активности живых организмов и их развитии играет продолжительность и интенсивность воздействие света – фотопериод. В умеренных широтах цикл развития животных и растений приурочен к сезонам года, и сигналом для подготовки к изменению температуры служит продолжительность светового дня, которая в отличии от других факторов всегда остается постоянной в определенном месте и в определенное время. Фотопериодизм – это пусковой механизм, включающий физиологические процессы, приводящие к росту и цветению растений весной, плодоношению летом, сбрасыванию листьев осенью у растений. У животных к накоплению жира к осени, размножению животных, их миграции, перелету птиц и наступлению стадии покоя у насекомых. (Сообщение учащихся).

Кроме сезонных, есть еще и суточные изменения режима освещенности, смена дня и ночи определяет суточный ритм физиологической активности организмов. Важное приспособление, которое обеспечивает выживание особи – это своего рода «биологические часы», способность ощущать время.

Животные , активность которых зависит от времени суток , бывают с дневным, ночным и сумеречным образом жизни.

ВЛАЖНОСТЬ

Вода – это необходимый компонент клетки, поэтому ее количество в тех или иных местах обитания является ограничивающим фактором для растений и животных и определяет характер флоры и фауны данной местности.

Избыток влаги в почве приводит к заболачиванию почвы и появлению болотной растительности. В зависимости от влажности почвы (количество осадков) видовой состав растительности меняется. Широколиственные леса сменяются мелколиственными, затем лесостепной растительностью. Далее низкотравье, и при 250 мл в год – пустыня. Осадки в течении года могут выпадать не равномерно, живым организмам приходится переносить длительные засухи. Например, растения и животные саванн, где интенсивность растительного покрова, а так же и интенсивное питание копытных животных зависит от сезона дождей.

В природе происходят и суточные колебания влажности воздуха, которые влияют на активность организмов. Между влажностью и температурой есть тесная связь. Температура сильнее влияет на организм при влажность высокая или низкая. У растений и животных появились приспособления к разной влажности. Например, у растений – развита мощная корневая система, утолщена кутикула листа, листовая пластинка уменьшена или превращена в иголки и колючки. У саксаула фотосинтез идет зеленой частью стебля. Рост в период засухи у растений прекращается. Кактусы запасают влагу в расширенной части стебля, иголки вместо листьев уменьшают испарение.

У животных тоже появились приспособленности, позволяющих переносить недостаток влаги. Мелкие животные – грызуны, змеи, черепахи, членистоногие – добывают влагу из пищи. Источником воды может стать жироподобное вещество например у верблюда. В жаркое время некоторые животные – грызуны, черепахи впадают в спячку, продолжавшуюся несколько месяцев. Растения – эфемеры к началу лета, после кратковременного цветения, могут сбрасывать листья, отмирать наземные части и так переживать период засухи. При этом до следующего сезона сохраняются луковицы, корневища.

По отношению к воде растения делят:

  1. водные растения повышенной влажности;
  2. околоводные растения, наземно-водные;
  3. наземные растения;
  4. растения сухих и очень сухих мест, обитают в местах с недостаточным увлажнениям, могут переносить непродолжительную засуху;
  5. суккуленты – сочные, накапливают воду в тканях своего тел.

По отношению к воде животных делят:

  1. влаголюбивые животные;
  2. промежуточная группа;
  3. сухолюбивые животные.

Виды приспособленностей организмов к колебаниям температуры, влажности и света:

  1. теплокровность поддержание организмом постоянной температуры тела;
  2. зимняя спячка – продолжительныйсон животных в зимнее время года;
  3. анабиоз – временное состояние организма, при котором жизненные процессы замедленны до минимума и отсутствуют все видимые признаки жизни (наблюдается у холоднокровных и у животных зимой и в жаркий период времени);
  4. морозостойкост ь – способность организмов переносить отрицательные температуры;
  5. состояние покоя – приспособительное свойство многолетнего растения, для которого характерно прекращение видимого роста и жизнедеятельности, отмирание наземных побегов у травянистых форм растений и опадение листьев у древесных форм;
  6. летний покой – приспособительное свойство раннецветущих растений (тюльпан, шафран) тропических районов, пустынь, полупустынь.

(Сообщения учащихся.)

Сделаем вывод, на все живые организмы, т.е. на растения и животные действуют абиотические факторы среды (факторы неживой природы), особенно температура, свет и увлажненность. В зависимости от влияния факторов неживой природы, растения и животных делят на различные группы и у них появляются приспособленности к влиянию этих абиотических факторов.

Практические задания по группам: (Приложение 1)

1. ЗАДАНИЕ: Из перечисленных животных назовите хладнокровных (т.е. с непостоянной температурой тела).

2. ЗАДАНИЕ: Из перечисленных животных назовите теплокровных (т.е. с постоянной температурой тела).

3. ЗАДАНИЕ: выберите из предложенных растений те, которые являются светолюбивыми, тенелюбивыми и теневыносливыми и запишите в таблицу.

4. ЗАДАНИЕ: выберите животных, ведущих дневной, ночной и сумеречный образ жизни.

5. ЗАДАНИЕ: выберите растения, относящиеся к разным группам по отношению к воде.

6. ЗАДАНИЕ: выберите животных, относящихся к разным группам по отношению к воде.

Задания по теме «абиотические факторы среды», ответы (

Важнейшие абиотические факторы и адаптация к ним живых организмов

    Дайте характеристику света как абиотического фактора. Приведите классификацию экологических классов растений по отношению к свету.

    Охарактеризуйте температуру как абиотический фактор. Объясните экологический смысл правил Бергмана и Аллена (приведите примеры).

    В чем состоит различие между пойкилотермными и гомойотермными организмами?

    Как формулируется биоклиматический закон А. Хопкинса? Дайте ему экологическое объяснение.

    Охарактеризуйте влажность как абиотический фактор. Приведите примеры влаго- и сухолюбивых растений и животных, а также предпочитающих умеренную влажность.

Среди основных абиотических факторов рассмотрим свет , температуру и влажность .

Свет.
В свое время французский астроном Камиль Фламмарион (1842-1925) написал: "Мы об этом не думаем, но все, что ходит, двигается, живет на нашей планете, есть дитя Солнца" .

Действительно, только под влиянием света осуществляется важнейший в биосфере процесс фотосинтеза, который в общем виде может быть представлен следующим образом:

Где А - донор электронов.

У зеленых растений (высших растений и водорослей) донором электронов является вода (кислород), поэтому в результате фотосинтеза образуется кислород:

У бактерий роль донора электронов могут выполнять, например, сероводород (сера), органические вещества. Так, у зеленых и пурпурных серобактерий идет следующий процесс:

В отношении света организмы стоят перед дилеммой: с одной стороны, прямое воздействие света на клетку может быть смертельно для организма, с другой - свет служит первичным источником энергии, без которого невозможна жизнь.

Видимый свет оказывает на организмы смешанное действие: красные лучи - тепловое воздействие; синие и фиолетовые лучи - изменяют скорость и направление биохимических реакций. В целом свет влияет на скорость роста и развития растений, на интенсивность фотосинтеза, на активность животных, вызывает изменение влажности и температуры среды, является важным фактором, обеспечивающим суточные и сезонные биологические циклы. Каждое местообитание характеризуется определенным световым режимом, определяемым интенсивностью (силой), количеством и качеством света.

Интенсивность (сила) света измеряется энергией, приходящейся на единицу площади в единицу времени: Дж/м2Чс; Дж/см2Чс. На этот фактор сильно влияют особенности рельефа. Самым интенсивным является прямой свет, однако более полно растениями используется рассеянный свет.

Количество света определяется суммарной радиацией. От полюсов к экватору количество света увеличивается. Для определения светового режима необходимо учитывать и количество отраженного света, так называемое альбедо. Альбедо (от лат. albus - белый) - отражающая способность поверхностей различных тел - выражается в процентах от общей радиации и зависит от угла падения лучей и свойств отражающей поверхности. Например, альбедо чистого снега - 85%, загрязненного - 40-50%, черноземной почвы - 5-14%, светлого песка - 35-45%, полога леса - 10-18%, зеленых листьев клена - 10%, осенних пожелтевших листьев - 28%.

По отношению к свету как экологическому фактору различают следующие группы растений: гелиофиты (от греч. helios - солнце, phyton - растение), сциофиты (от греч. skia - тень) и теневыносливые растения (факультативные гелиофиты).

    Световые растения (гелиофиты) - обитают на открытых местах с хорошей освещенностью и в лесной зоне встречаются редко. Процесс фотосинтеза начинает преобладать над процессом дыхания только при высокой освещенности (пшеница, сосна, лиственница). Цветки таких светолюбивых растений, как подсолнечник, козлобородник, череда, поворачиваются за солнцем.

    Теневые растения (сциофиты) - не выносят сильного освещения и живут под пологом леса в постоянной тени (это в основном лесные травы, папоротники, мхи, кислица). На вырубках при сильном освещении они проявляют явные признаки угнетения и часто погибают.

    Теневыносливые растения (факультативные гелиофиты) - могут жить при хорошем освещении, но легко переносят и затемненные места (большинство растений лесов, луговые растения, лесные травы и кустарники).

Теневыносливые древесные породы и теневые травянистые растения отличаются мозаичным расположением листьев. У эвкалиптов листья обращены к свету ребром. У деревьев световые и теневые листья (располагаются соответственно по поверхности и внутри кроны) - хорошо освещаемые и затененные - имеют анатомические различия. Световые листья толще и грубее, иногда они блестящие, что способствует отражению света. Теневые листья обычно матовые, неопушенные, тонкие, с очень нежной кутикулой или вовсе без нее (кутикула - наружная пленка, покрывающая эпидермис).

В лесу теневыносливые деревья образуют густо сомкнутые насаждения. Под их пологом растут еще более теневыносливые деревья и кустарники, а ниже - теневые кустарнички и травы. На рисунке показаны две сосны: одна из них росла на открытом пространстве при хорошем освещении (1), а другая в густом лесу (2).

Наибольшее значение свет как средство ориентации имеет в жизни животных. Уже у простейших появляются светочувствительные органеллы. Так, эвглена зеленая с помощью светочувствительного "глазка" реагирует на степень освещенности среды. Начиная с кишечнополостных, практически у всех животных развиваются светочувствительные органы - глаза, имеющие то или иное строение.

Биолюминесценцией называется способность живых организмов светиться. Происходит это в результате окисления сложных органических соединений при участии катализаторов обычно в ответ на раздражения, поступающие из внешней среды. Световые сигналы, испускаемые рыбами, головоногими моллюсками и другими гидробионтами, а также некоторыми организмами наземно-воздушной среды (например, жуками семейства светляков), служат для привлечения особей противоположного пола, приманивания добычи или отпугивания хищников, ориентации в стае и др.

Важным экологическим фактором является температура.

Температура.
Одним из наиболее важных факторов, определяющих существование, развитие и распространение организмов по земному шару, является температура. Важно не только абсолютное количество тепла, но и его временнoе распределение, т. е. тепловой режим.
Растения не обладают собственной температурой тела: их анатомо-морфологические и физиологические механизмы термо-
регуляции направлены на защиту организма от вредного воздействия неблагоприятных температур.

В зоне высоких температур при пониженной влажности (тропические и субтропические пустыни) исторически сформировался своеобразный морфологический тип растений с незначительной листовой поверхностью или с полным отсутствием листьев. У многих пустынных растений образуется беловатое опушение, способствующее отражению солнечных лучей и предохраняющее их от перегрева (акация песчаная, лох узколистный).

К физиологическим приспособлениям растений, сглаживающим вредное влияние высоких температур, могут быть отнесены: интенсивность испарения - транспирация (от лат. trans - через, spiro - дышу, выдыхаю), накопление в клетках солей, изменяющих температуру свертывания плазмы, свойство хлорофилла препятствовать проникновению солнечных лучей.

В мире животных наблюдаются определенные морфологические адаптации, направленные на защиту организмов от неблагоприятного действия температур. Свидетельством этого может служить известное правило Бергмана (1847 г.), согласно которому в пределах вида или достаточно однородной группы близких видов теплокровные организмы с более крупными размерами тела распространены в более холодных областях.

Попытаемся объяснить это правило с позиций термодинамики: потеря тепла пропорциональна поверхности тела организма, а не его массе. Чем крупнее животное и компактнее его тело, тем легче поддерживать постоянную температуру (меньше удельный расход энергии), и наоборот, чем мельче животное, тем больше его относительная поверхность и теплопотери и выше удельный уровень его основного обмена, т. е. количества энергии, расходуемого организмом животного (или человека) при полном мышечном покое при такой температуре окружающей среды, при которой терморегуляция наиболее выражена.

У животных с постоянной температурой тела в холодных климатических зонах наблюдается тенденция к уменьшению площади выступающих частей тела (правило Аллена, 1877 г.).

Правило Аллена наглядно проявляется, например, при сравнении размеров ушей экологически близких видов: песца - обитателя тундры; лисицы обыкновенной - типичной для умеренных широт; фенека - обитателя пустынь Африки.
Реакция животных на тепловой режим проявляется и в изменениях пропорций отдельных органов и тела (у горностая из северных районов увеличено сердце, почки, печень и надпочечники по сравнению с такими же зверьками в местностях с более высокой температурой). Из правил Бергмана и Аллена бывают исключения.

Фенек

В зависимости от вида теплообмена различают два экологических типа животных: пойкилотермные и гомойотермные.

Пойкилотермные организмы (от греч. poikilos - разнообразный) - животные с неустойчивым уровнем обмена веществ, непостоянной температурой тела и почти полным отсутствием механизмов теплорегуляции (холоднокровные). К ним относятся беспозвоночные, рыбы, пресмыкающиеся, земноводные, т. е. большинство животных, за исключением птиц и млекопитающих.

Температура тела у них изменяется с изменением температуры окружающей среды.

Гомойотермные организмы (от греч. homoios - одинаковый) - животные с более высоким и устойчивым уровнем обмена веществ, в процессе которого осуществляется терморегуляция и обеспечивается относительно постоянная температура тела (теплокровные). К ним относятся птицы и млекопитающие. Температура тела поддерживается на относительно постоянном уровне.

В свою очередь, пойкилотермных животных можно разделить на эвритермных, ведущих активный образ жизни в сравнительно широком температурном диапазоне, и стенотермных, не переносящих значительных колебаний температур.

Механизмы терморегуляции бывают химические и физические.

Химический механизм обусловлен интенсивностью реакций в организме и осуществляется рефлекторным путем:

Физический механизм терморегуляции обеспечивают теплоизолирующие покровы (мех, перья, жировой слой), деятельность потовых желез, испарение влаги при дыхании, сосудистая регуляция кровообращения.

У пойкилотермных животных интенсивность обмена веществ прямо пропорциональна внешней температуре, у гомойотермных - наоборот, при ее понижении возрастают потери тепла и в ответ активизируются обменные процессы, повышается теплопродукция. Интенсивность метаболизма (обменных процессов) при гомойотермии обратно пропорциональна внешним температурам. Однако такая закономерность прослеживается лишь в определенных пределах. Повышение или понижение температуры относительно порогового значения вызывает перегрев или переохлаждение животного и в итоге его гибель.

Промежуточное положение между пойкилотермными и гомойотермными занимают гетеротермные животные. У них в активном состоянии поддерживается относительно высокая и постоянная температура тела, а в неактивном - температура тела мало отличается от внешней. У этих животных во время спячки или глубокого сна уровень обмена веществ падает, и температура тела лишь незначительно превышает температуру среды. Типичными представителями гетеротермных животных являются суслики, ежи, летучие мыши, медведи, стрижи, утконосы, ехидны, кенгуру.

Рассмотрим пример с насекомыми, представителями пойкилотермных животных (см. рисунок).

Кривая П. И. Бахметьева

При t° +10°C у насекомых наступает оцепенение, при t° 0°C - переохлаждение. Оно продолжается до момента кристаллизации воды, которая сопровождается скачком температуры. После резкого ее повышения начинаются процессы, ведущие к ухудшению физиологического состояния организма. Физиологическое состояние насекомого в процессе охлаждения зависит от скорости понижения температуры. При медленном охлаждении в клетках образуются кристаллы льда, которые разрывают их оболочку. При очень быстром охлаждении центры кристаллизации не успевают образоваться, и формируется стекловидная структура. В результате цитоплазма не повреждается. Таким образом, глубокое, но очень быстрое охлаждение вызывает временную, обратимую приостановку всех жизненных процессов организма. Подобное состояние, получившее название анабиоз, наблюдается у вирусов, бактерий, беспозвоночных, земноводных, пресмыкающихся, лишайников, мхов. Явление анабиоза впервые было обнаружено и описано А. Левенгуком (1701 г.).

Изучение анабиоза послужило толчком к развитию различных криотехнологий (от греч. kryos - холод, мороз), например, криоконсервации. Этот метод широко используется в биологии, медицине, сельском хозяйстве, в практике длительного хранения консервированной крови, спермы для искусственного осеменения сельскохозяйственных животных, различных тканей и органов для трансплантации (от лат. transplantatio - пересаживание), культур, бактерий, вирусов.

Температурный фактор имеет важное значение в распределении живых организмов на Земле и тем самым обусловливает заселенность ими разных природных зон. В 1918 г. А. Хопкинс сформ улировал биоклиматический закон. Он установил, что существует закономерная, тесная связь развития фенологических (сезонных) явлений с широтой, долготой и высотой местности над уровнем моря.
Он подсчитал, что
по мере продвижения на север, восток и в горы время наступления периодических явлений в жизнедеятельности организмов запаздывает на 4 дня на каждый градус широты, 5 градусов долготы и примерно на 100 м высоты.

Одной из важных закономерностей в распределении современных организмов служит их биполярность - географическое распределение наземной и морской флоры и фауны, при котором один и тот же вид обитает в холодных и умеренных широтах обоих полушарий, но отсутствует в тропическом поясе (беззубые киты, ушастые тюлени и др.).

Не менее важным фактором окружающей среды является влажность.

Влажность.
Вода является важнейшим экологическим фактором в жизни живых организмов и их постоянной составной частью. Все живое Земли включает воду, например, медузы содержат 95-99% воды, кукуруза 70%, зерновые злаки 87%. Даже в амбарном долгоносике, питающемся сухим зерном, содержится 46% воды. В эмбрионе человека 97% воды, после его рождения - 64-77%. У мужчин в возрасте от 18 до 50 лет в организме содержится ~ 61% воды, у женщин 54%.

За свою жизнь человек выпивает до 50-77 м3 воды (за сутки ~ 2,5-3 л). В целом за сутки человек теряет 2-2,5 л воды: 800-

1300 мл с мочой, около 200 мл - с испражнениями и 600 мл с поверхности тела и при дыхании. С потерей 1-1,5 л воды у человека появляется жажда, при расходовании 6-8% влаги от веса тела он впадает в полуобморочное состояние, при дефиците 10-12% наступает смерть.

В различные периоды развития потребность растений в воде неодинакова, особенно у разных видов; меняется она и в зависимости от климата и типа почвы. Например, злакам в период прорастания семян и их созревания нужно меньше влаги, чем во время их интенсивного роста. Для каждой фазы роста и стадии развития любого вида растений можно выделить критический период, когда недостаток воды особенно отрицательно сказывается на его жизнедеятельности. Влажность среды часто является фактором, лимитирующим численность и распространение организмов по земному шару. Например, бук может жить на сравнительно сухой почве, но ему необходима достаточно высокая влажность воздуха. У животных весьма важную роль играют проницаемость покровов и механизмы, регулирующие водный обмен.

Различают абсолютную влажность воздуха, представляющую собой количество газообразной воды (пара) в граммах в 1 м3 воздуха, и относительную. Относительная влажность характеризует степень насыщения воздуха парами воды при определенной температуре и выражается в процентах как отношение абсолютной влажности к максимальной влажности (массе водяных паров в граммах, способных создать полное насыщение в 1 м3 воздуха)

где: r - относительная влажность, %;
m - масса пара, фактически содержащегося в 1 м3 воздуха (абсолютная влажность), г;
mнас - масса 1 м3 насыщенного пара при данной температуре, г.

Важное значение для организмов имеет дефицит насыщения воздуха водяными парами, т. е. разность между максимальной и абсолютной влажностью при данной температуре:

d = mнас - m.

При разных температурах дефицит насыщения воздуха водяными парами неодинаков при одной и той же влажности. Чем выше температура, тем воздух суше, и тем интенсивнее в нем происходит транспирация (испарение воды листьями и другими частями растений).

Сезонное распределение влаги в течение года, а также ее суточное колебание тоже исключительно важно для жизнедеятельности организмов.

По отношению к водному режиму выделяют следующие экологические группы растений и животных: влаголюбивые, сухолюбивые и предпочитающие умеренную влажность . Среди растений различают:

Среди наземных животных различают:

    Гидрофилы - влаголюбивые животные (мокрицы, ногохвостки, комары, наземные планарии, наземные моллюски и амфибии).

    Мезофилы - обитают в районах с умеренной влажностью (озимая совка, многие насекомые, птицы, млекопитающие).

    Ксерофилы - это сухолюбивые животные, не переносящие высокой влажности (верблюды, пустынные грызуны и пресмыкающиеся).

Например, слоновая черепаха запасает воду в мочевом пузыре, некоторые млекопитающие избегают дефицита влаги путем отложения жиров, при окислении которых образуется метаболическая вода. За счет метаболической воды живут многие насекомые, верблюды, курдючные овцы, жирнохвостые тушканчики и др.

Введение

Каждый день вы, спеша по делам, ходите по улице, ежась от холода или обливаясь потом от жары. А после рабочего дня идете в магазин, покупаете продукты питания. Выйдя из магазина, спешно останавливаете проезжающую маршрутку и бессильно опускаетесь на ближайшее свободное место. Для многих это знакомый образ жизни, не так ли? А вы никогда не задумывались о том, как протекает жизнь с точки зрения экологии? Существование человека, растений и животных возможно лишь благодаря их взаимодействию. Не обходится оно и без влияния неживой природы. У каждого из этих типов воздействия есть свое обозначение. Итак, существует всего три вида влияния на окружающую среду. Это антропогенные, биотические и абиотические факторы. Давайте рассмотрим каждый из них и его воздействие на природу.

1. Антропогенные факторы - влияние на природу всех форм деятельности человека

Когда упоминается этот термин, в голову не приходит ни одной положительной мысли. Даже когда люди делают что-нибудь хорошее для животных и растений, то происходит это из-за последствий ранее сделанного плохого (к примеру, браконьерства).

Антропогенные факторы (примеры):

  • Высушивание болот.
  • Удобрение полей пестицидами.
  • Браконьерство.
  • Промышленные отходы (фото).

Вывод

Как видите, в основном человек наносит окружающей среде только вред. И из-за увеличения хозяйственного и промышленного производства даже природоохранные меры, учреждаемые редкими добровольцами (создание заповедников, экологические митинги), уже перестают помогать.

2. Биотические факторы - влияние живой природы на разнообразные организмы

Проще говоря, это взаимодействие растений и животных между собой. Оно может быть как положительным, так и отрицательным. Существует несколько видов такого взаимодействия:

1. Конкуренция - такие взаимосвязи между особями одного или разных видов, при которых использование определенного ресурса одним из них уменьшает его доступность для других. В общем, при конкуренции животные или растения борются между собой за свой кусок хлеба

2. Мутуализм - такая взаимосвязь, при которой каждый из видов получает определенную пользу. Проще говоря, когда растения и/или животные гармонично дополняют друг друга.

3. Комменсализм - такая форма симбиоза между организмами разных видов, при которой один из них использует жилище или организм хозяина как место поселения и может питаться остатками пищи или продуктами его жизнедеятельности. При этом он не приносит хозяину ни вреда, ни пользы. В общем, маленькое незаметное дополнение.

Биотические факторы (примеры):

Сосуществование рыб и коралловых полипов, жгутиковых простейших и насекомых, деревьев и птиц (например, дятлов), скворцов-майн и носорогов.

Вывод

Несмотря на то, что биотические факторы могут приносить вред животным, растениям и человеку, от них есть и очень большая польза.

3. Абиотические факторы - воздействие неживой природы на разнообразные организмы

Да, и неживая природа тоже играет немаловажную роль в жизненных процессах животных, растений и человека. Пожалуй, самым главным абиотическим фактором является погода.

Абиотические факторы: примеры

Абиотические факторы - это температура, влажность, освещенность, соленость воды и почвы, а также воздушная среда и ее газовый состав.

Вывод

Абиотические факторы могут наносить вред животным, растениям и человеку, но все-таки в основном они приносят им пользу

Итог

Единственный фактор, не приносящий никому пользы - это антропогенный. Да, человеку он тоже не приносит ничего хорошего, хотя тот уверен, что изменяет природу для своего блага, и не задумывается, во что превратится для него и его потомков это "благо" через десяток лет. Человеком уже полностью уничтожены многие виды животных и растений, которые имели свое место в мировой экосистеме. Биосфера Земли похожа на фильм, в котором нет второстепенных ролей, все они являются главными. А вот теперь представьте, что некоторые из них убрали. Что получится в фильме? Вот так и в природе: если исчезнет самая малая песчинка, рухнет великое здание Жизни.


Абиотическими факторами называют всю совокупность факторов неорганической среды, влияющих на жизнь и распространение животных и растений (В.И. Коробкин, Л.В. Передельский, 2000).

Химические факторы - это те, которые происходят от химического состава среды. Они включают химический состав атмосферы, вод и почвы и т.д.

Физические факторы - это те, источником которых служит физическое состояние или явление (механическое, волновое и др.). Это температура, давление, ветер, влажность, радиационный режим и др. Строение поверхности, геологические и климатические различия обусловливают большое разнообразие абиотических факторов.

Среди химических и физических факторов среды выделяют три группы факторов: климатические, факторы почвенного покрова (эдафические) и водной среды.

I. Главнейшие климатические факторы :

1. Лучистая энергия Солнца.

Преимущественное значение для жизни имеют инфракрасные лучи (длина волны больше 0,76 мкм), на долю которых приходится 45 % всей энергии Солнца. В процессах фотосинтеза наиболее важную роль играют ультрафиолетовые лучи (длина волны до 0,4 мкм), составляющие 7 % энергии солнечной радиации. Остальная часть энергии приходится на видимую часть спектра с длиной волны 0,4 - 0,76 мкм.

2. Освещенность земной поверхности.

Она играет важную роль для всего живого, и организмы физиологически адаптированы к смене дня и ночи. Практически у всех животных существуют суточные ритмы активности, связанные со сменой дня и ночи.

3. Влажность атмосферного воздуха.

Связана с насыщением воздуха водяными парами. В нижних слоях атмосферы (высотой до 2 км) концентрируется до 50% всей атмосферной влаги.

Количество водяного пара в воздухе зависит от температуры воздуха. Для конкретной температуры существует определенный предел насыщения воздуха парами воды, который называют максимальным. Разность между максимальным и данным насыщением воздуха парами воды называется дефицитом влажности (недостатком насыщения). Дефицит влажности является важным экологическим параметром, так как характеризует две величины: температуру и влажность.

Известно, что повышение дефицита влажности в определенные отрезки вегетационного периода способствует усиленному плодоношению растений, а у некоторых насекомых приводит к вспышкам размножения.

4. Осадки.

Из-за конденсации и кристаллизации паров воды в высоких слоях атмосферы формируются облака и атмосферные осадки. В приземном слое образуются росы и туманы.

Влага - основной фактор, определяющий разделение экосистем на лесные, степные и пустынные. Годовая сумма осадков ниже 1000мм соответствует стрессовой зоне для многих видов деревьев, а предел устойчивости большинства из них составляет около 750 мм/год. В то же время у большинства злаков такой предел значительно ниже – примерно 250 мм/год, а кактусы и другие пустынные растения способны расти при 50- 100 мм осадков в год. Соответственно, в местах с количеством осадков выше 750 мм/год обычно развиваются леса, от 250 до 750 мм/год- злаковые степи, а там, где их выпадает еще меньше, растительность представлена засухоустойчивыми культурами: кактусами, полынями и видами перекати - поле. При промежуточных значениях годовой суммы осадков развиваются экосистемы переходного типа (лесостепи, полупустыни и т.д.).

Режим осадков является важнейшим фактором, определяющим миграцию загрязняющих веществ в биосфере. Осадки - одно из звеньев в круговороте воды на Земле.

5. Газовый состав атмосферы.

Он относительно постоянен и включает преимущественно азот и кислород с примесью углекислого газа, аргона и других газов. Кроме того, в верхних слоях атмосферы содержится озон. В атмосферном воздухе присутствуют также твердые и жидкие частицы.

Азот участвует в образовании белковых структур организмов; кислород обеспечивает окислительные процессы; углекислый газ участвует в фотосинтезе и является естественным демпфером теплового излучения Земли; озон является экраном ультрафиолетового излучения. Твердые и жидкие частицы влияют на прозрачность атмосферы, препятствуя прохождению солнечных лучей к поверхности Земли.

6. Температура на поверхности земного шара.

Этот фактор тесно связан с солнечным излучением. Количество тепла, падающего на горизонтальную поверхность, прямо пропорционально синусу угла стояния Солнца над горизонтом. Поэтому в одних и тех же районах наблюдаются суточные и сезонные колебания температуры. Чем выше широта местности (к северу и югу от экватора), тем больше угол наклона солнечных лучей к поверхности Земли и тем холоднее климат.

Температура, так же как и осадки, очень важна для определения характера экосистемы, правда, температура играет в каком-то смысле вторичную роль по сравнению с осадками. Так, при их количестве 750 мм/год и более развиваются лесные сообщества, а температура лишь обусловливает, какой именно тип леса будет формироваться в регионе. Например, еловые и пихтовые леса характерны для холодных регионов с мощным снежным покровом зимой и коротким вегетационным периодом, т. е. для севера или высокогорий. Листопадные деревья также в состоянии переносить морозную зиму, но требуют более долгого вегетационного периода, поэтому преобладают на умеренных широтах. Мощные вечнозеленые широколиственные породы с быстрым ростом, не способные выдержать даже кратковременных заморозков, доминируют в тропиках (вблизи экватора). Точно также любая территория с годовой суммой осадков менее 250 мм представляет собой пустыню, но по своей биоте пустыни жаркого пояса существенно отличаются от свойственных холодным регионам.

7. Движение воздушных масс (ветер).

Причина ветра - неодинаковый нагрев земной поверхности, связанный с перепадами давления. Ветровой поток направлен в сторону меньшего давления, т.е. туда, где воздух более прогрет. В приземном слое воздуха движение воздушных масс оказывает влияние на все параметры: влажность, и т.д.

Ветер - важнейший фактор переноса и распределения примесей в атмосфере.

8. Давление атмосферы.

Нормальным считается давление 1 кПа, соответствующее 750,1 мм. рт. ст. В пределах земного шара существуют постоянные области высокого и низкого давления, причем в одних и тех же точках наблюдаются сезонные и суточные минимумы и максимумы давления.

II. Абиотические факторы почвенного покрова (эдафические)

Эдафические факторы - это совокупность химических, физических и других свойств почв, оказывающих воздействие как на организмы, живущие в них, так и на корневую систему растений. Из них важнейшими экологическими факторами являются влажность, температура, структура и пористость, реакция почвенной среды, засоленность.

В современном понимании почва - это естественноисторическое образование, возникшее в результате изменения поверхностного слоя литосферы совместным воздействием воды, воздуха и живых организмов (В. Коробкин, Л. Передельский). Почва обладает плодородием, т.е. дает жизнь растениям и, следовательно, пищу животным и человеку. Она состоит из твердой, жидкой и газообразной компонент; содержит живые макро- и микроорганизмы (растительные и животные).

Твердая компонента представлена минеральной и органической частями. В почве больше всего минералов первичных, оставшихся от материнской породы, меньше - вторичных, образовавшихся в результате разложения первичных. Это глинистые минералы коллоидных размеров, а также минералы - соли: карбонаты, сульфаты и др.

Органическая часть представлена гумусом, т.е. сложным органическим веществом, образовавшимся в результате разложения отмершей органики. Содержание его в почве колеблется от десятых долей до 22 %. Он играет важную роль в плодородии почвы благодаря питательным элементам, которые он содержит.

Почвенная биота представлена фауной и флорой. Фауна - это дождевые черви, мокрицы и др., флора - это грибы, бактерии, водоросли и др.

Всю жидкую компоненту почв называют почвенным раствором. Он может содержать химические соединения: нитраты, бикарбонаты, фосфаты и др., а также водорастворимые органические кислоты, их соли, сахара. Состав и концентрация почвенного раствора определяют реакцию среды, показателем которой является величина рН.

Почвенный воздух обладает повышенным содержанием СО2, углеводорода и водяного пара. Все эти элементы определяют химические свойства почвы.

Все свойства почвы зависят не только от климатических факторов, но и от жизнедеятельности почвенных организмов, которые механически перемешивают ее и перерабатывают химически, создавая в конечном итоге необходимые для себя условия. При участии организмов в почве происходит постоянный круговорот веществ и миграция энергии. Круговорот веществ в почве можно представить следующим образом (В.А. Радкевич).

Растения синтезируют органическое вещество, а животные производят механическое и биохимическое разрушение его и как бы подготавливают его для гумусообразования. Микроорганизмы синтезируют почвенный гумус и затем разлагают его.

Почва обеспечивает водоснабжение растений. Значение почвы в водоснабжении растений тем выше, чем она легче отдает им воду. Это зависит от структуры почвы и степени набухаемости ее частиц.

Под структурой почвы следует понимать комплекс почвенных агрегатов различной формы и величины, образовавшихся из первичных механических элементов почвы. Различают следующие структуры почв: зернистая, пылеватая, ореховатая, комковатая, глыбистая.

Основной функцией высших растений в почвообразовательном процессе служит синтез органического вещества. Это органическое вещество в процессе фотосинтеза накапливается в надземных и подземных частях растений, а после их отмирания переходит в почву и подвергается минерализации. Скорость процессов минерализации органического вещества и состав образующихся при этом соединений во многом зависят от типа растительности. Продукты разложения хвои, листьев, древесина травянистого покрова различны как по химизму, так и по влиянию на процесс почвообразования. В сочетании с другими факторами это приводит к формированию различных типов почв.

Главная функция животных в почвообразовательном процессе - это потребление и разрушение органического вещества, а также перераспределение запасов энергии. Большую роль в процессах почвообразования играют подвижные почвенные животные. Они разрыхляют почву, создают условия для ее аэрации, механически перемещают в почве органические и неорганические вещества. Например, дождевые черви выбрасывают на поверхность до80 – 90 /га материала, а степные грызуны перемещают вверх и вниз сотни м3 грунта и органического вещества.

Влияние климатических условий на процессы почвообразования, безусловно, велики. Количество атмосферных осадков, температура, приток лучистой энергии - света и тепла - обусловливают образование растительной массы и скорость разложения растительных остатков, от которых зависит содержание перегноя в почве.

В результате перемещения и превращения веществ почва расчленяется на отдельные слои, или горизонты, сочетание которых составляет профиль почвы.

Поверхностный горизонт, подстилка или дернина, состоит большей частью из свежеопавших и частично разложившихся листьев, веток, останков животных, грибов и других органических веществ. Окрашен обычно в темный цвет - коричневый или черный. Лежащий под ним гумусовый горизонт А1, как правило, представляет собой пористую смесь частично разложившегося органического вещества (гумуса), живых организмов и некоторых неорганических частиц. Обычно он более темный и рыхлый, чем нижние горизонты. В этих двух верхних горизонтах сконцентрирована основная часть органического вещества почвы и корни растений.

О почвенном плодородии многое может сказать ее цвет. Например, темно-коричневый или черный гумусовый горизонт богат органическими веществами и азотом. В серых, желтых или красных почвах органического вещества мало, и для повышения их урожайности требуются азотные удобрения.

В лесных почвах под горизонтом А1 залегает малоплодородный подзолистый горизонт А2, имеющий светлый оттенок и непрочную структуру. В черноземных, темно-каштановых, каштановых и других типах почв этот горизонт отсутствует. Еще глубже во многих типах почв расположен горизонт В - иллювиальный, или горизонт вмывания. В него вмываются и в нем накапливаются минеральные и органические вещества из вышележащих горизонтов. Чаще всего он окрашен в бурый цвет и имеет большую плотность. Еще ниже залегает материнская горная порода С, на которой формируется почва.

Структура и пористость определяют доступность для растений и почвенных животных питательных веществ. Частицы почв, связанные между собой силами молекулярной природы, образуют структуру почвы. Между ними образуются пустоты, называемые порами. Структура и пористость почвы обеспечивают ее хорошую аэрацию. Почвенный воздух так же, как и почвенная вода, находится в порах между частицами почвы. Порозность возрастает от глин к суглинкам и пескам. Между почвой и атмосферой происходит свободный газообмен, в результате чего газовый состав обеих сред имеет сходный состав. Обычно в воздухе почвы из - за дыхания населяющих ее организмов несколько меньше кислорода и больше углекислого газа, чем в атмосферном воздухе. Кислород необходим для корней растений, почвенных животных и организмов - редуцентов, разлагающих органическое вещество на неорганические составляющие. Если идет процесс заболачивания, то почвенный воздух вытесняется водой, и условия становятся анаэробными. Почва постепенно становится кислой, так как анаэробные организмы продолжают вырабатывать углекислый газ. Почва, если она небогата основаниями, может стать чрезвычайно кислой, а это наряду с истощением запасов кислорода неблагоприятно воздействует на почвенные микроорганизмы. Длительные анаэробные условия ведут к отмиранию растений.

Температура почвы зависит от внешней температуры, и на глубине 0,3 м, благодаря низкой теплопроводности амплитуда колебаний ее менее 20С (Ю.В. Новиков, 1979), что важно для почвенных животных (нет необходимости перемещаться вверх- вниз в поисках более комфортной температуры). Летом температура почвы ниже воздуха, а зимой – выше.

К химическим факторам относят реакцию среды и засоленность. Реакция среды весьма важна для многих растений и животных. В сухом климате преобладают нейтральные и щелочные почвы, во влажных районах - кислые. Поглощенные основания, кислоты и различные соли в процессе их взаимодействия с водой создают определенную концентрацию Н+ - и ОН- - ионов, которые обусловливают ту или иную реакцию почвы. Обычно различают почвы с нейтральной, кислой и щелочной реакцией.

Щелочность почвы обусловлена присутствием в поглощающем комплексе в основном Na+ - ионов. Такая почва при соприкосновении с водой, содержащей СО2, дает резко выраженную щелочную реакцию, что связано с образованием соды.

В тех случаях, когда почвенный поглощающий комплекс насыщен Са2+ и Mg2+, его реакция близка к нейтральной. Вместе с тем известно, что углекислый кальций в чистой воде и воде лишенной СО2, дает сильную щелочность. Это объясняется тем, что с увеличением содержания СО2 в почвенном растворе возрастает растворимость кальция (2+) с образованием бикарбоната, что приводит к понижению рН. Но при среднем количестве СО2 в почве реакция становится слабощелочной.

В процессе разложения растительных остатков, особенно лесной подстилки, образуются органические кислоты, которые вступают в реакцию с поглощенными катионами почв. Кислые почвы обладают рядом отрицательных свойств, всвязи с чем они малоплодородны. В такой, среде подавляется активная полезная деятельность почвенной микрофлоры. Для поднятия плодородия почв широко практикуется применение извести.

Высокая щелочность угнетает рост растений, и резко ухудшаются ее водно - физические свойства, разрушает структуру, усиливает подвижность и вынос коллоидов. Многие злаки дают лучший урожай на нейтральных и слабощелочных почвах (ячмень, пшеница), каковыми обычно являются черноземы.

В зонах недостаточного атмосферного увлажнения распространены засоленные почвы. Засоленными называют почвы с избыточным содержанием водорастворимых солей (хлоридов, сульфатов, карбонатов). Они возникают вследствие вторичного засоления почв при испарении грунтовых вод, уровень которых поднялся до почвенных горизонтов. Среди засоленных почв выделяют солончаки и солонцы. Солончаки имеются в Казахстане и Средней Азии, по берегам соленых рек. Засоление почв приводит к падению урожайности селъхозкультур. Дождевые черви даже при невысокой степени засоления почвы длительный срок выдержать не могут.

Растения, обитающие на засоленных почвах, называются галофитами. Некоторые из них выделяют излишки солей через листья или накапливают их в своем организме. Вот почему их иногда используют для получения соды и поташа.

Вода занимает преобладающую часть биосферы Земли (71 % общей площади земной поверхности).

Важнейшими абиотическими факторами водной среды являются следующие:

1. Плотность и вязкость.

Плотность воды в 800 раз, а вязкость - примерно в 55 раз больше, чем воздуха.

2. Теплоемкость.

Вода обладает высокой теплоемкостью, поэтому океан является главным приемником и аккумулятором солнечной энергии.

3. Подвижность.

Постоянное перемещение водных масс способствует поддержанию относительной гомогенности физических и химических свойств.

4. Температурная стратификация.

По глубине водного объекта наблюдается изменение температуры воды.

5. Периодические (годовые, суточные, сезонные) изменения температуры.

Самой низкой температурой воды считают -20С, самой высокой + 35-370С. Динамика колебаний температуры воды меньше, чем воздуха.

6. Прозрачность воды.

Определяет световой режим под поверхностью воды. От прозрачности (и обратной ей характеристики- мутности) зависит фотосинтез зеленых бактерий, фитопланктона, высших растений, а следовательно, и накопление органического вещества.

Мутность и прозрачность зависят от содержания взвешенных в воде веществ, в том числе и поступающих в водные объекты вместе с промышленными сбросами. В связи с этим прозрачность и содержание взвешенных веществ - важнейшие характеристики природных и сточных вод, подлежащие контролю на промышленном предприятии.

7. Соленость воды.

Содержание в воде карбонатов, сульфатов, хлоридов имеет большое значение для живых организмов. В пресных водах солей мало, причем преобладают карбонаты. Воды океана содержат в среднем 35 г/л солей, Черного моря-19 г/л, Каспийского - около 14 г/л. Здесь преобладают хлориды и сульфаты. В морской воде растворены практически все элементы периодической системы.

8. Растворенный кислород и диоксид углерода.

Перерасход кислорода на дыхание живых организмов и на окисление поступающих в воду с промышленными сбросами органических и минеральных веществ ведет к обеднению живого населения вплоть до невозможности обитания в такой воде аэробных организмов.

9. Концентрация водородных ионов (pH).

Все гидробионты приспособились к определенному уровню pH: одни предпочитают кислую среду, другие - щелочную, третьи - нейтральную. Изменение этих характеристик может привести к гибели гидробионтов.

10. Течение не только сильно влияет на концентрацию газов и питательных веществ, но и прямо действует как лимитирующий фактор. Многие речные растения и животные морфологически и физиологически особым образом приспособлены к сохранению своего положения в потоке: у них есть вполне определенные пределы толерантности к фактору течения.

Главным топографическим фактором является высота над уровнем моря . С высотой снижаются средние температуры, увеличивается суточный перепад температур, возрастают количество осадков, скорость ветра и интенсивность радиации, понижаются атмосферное давление и концентрации газов. Все эти факторы влияют на растения и животных, обуславливая вертикальную зональность.

Горные цепи могут служить климатическими барьерами. Горы служат также барьерами для распространения и миграции организмов и могут играть роль лимитирующего фактора в процессах видообразования.

Еще один топографический фактор - экспозиция склона . В северном полушарии склоны, обращенные на юг, получают больше солнечного света, поэтому интенсивность света и температура здесь выше, чем на дне долин и на склонах северной экспозиции. В южном полушарии имеет место обратная ситуация.

Важным фактором рельефа является также крутизна склона . Для крутых склонов характерны быстрый дренаж и смывание почв, поэтому здесь почвы маломощные и более сухие. Если уклон превышает 35Ь, почва и растительность обычно не образуются, а создаются осыпи из рыхлого материала.

Верховые пожары оказывают лимитирующее действие на большинство организмов - биотическому сообществу приходится начинать все сначала, с того немногого, что осталось, и должно пройти много лет, пока участок снова станет продуктивным. Низовые пожары, напротив, обладают избирательным действием: для одних организмов они оказываются более лимитирующим, для других - менее лимитирующим фактором и таким образом способствуют развитию организмов с высокой толерантностью к пожарам. Кроме того, небольшие низовые пожары дополняют действие бактерий, разлагая умершие растения и ускоряя превращение минеральных элементов питания в форму, пригодную для использования новыми поколениями растений. Растения выработали специальные адаптации к пожару, так же, как они сделали по отношению к другим абиотическим факторам. В частности, почки злаков и сосен скрыты от огня в глубине пучков листьев или хвоинок. В периодически выгорающих местообитаниях эти виды растений получают преимущества, так как огонь способствует их сохранению, избирательно содействуя их процветанию.

Классификация экологических факторов.

ЭКОЛОГИЧЕСКИЕ ФАКТОРЫ

4.1. Классификация экологических факторов.

4.2. Абиотические факторы

4.3. Биотические факторы

4.3. Экологическая пластичность. Понятие о лимитирующем факторе

С экологической позиции окружающая среда – это природные тела и явления, с которыми организм находится в прямых или косвенных отношениях.

Окружающая организм среда характеризуется огромным разнообразием, слагаясь из множества динамичных во времени и пространстве элементов, явлений, условий, которые рассматриваются в качестве факторов.

Экологический фактор - это любое условие среды, способное оказывать прямое или косвенное влияние на живые организмы, хотя бы на протяжении одной из фаз их индивидуального развития, или любое условие среды, к которому организм приспосабливается. В свою очередь организм реагирует на экологический фактор специфичными приспособительными реакциями.

Экологические факторы среды делятся на три категории:

1) факторы неживой природы (абиотические) ;

2) факторы живой природы (биотические) ;

3) антропогенные.

Из многих существующих классификаций экологических факторов для задач данного курса целесообразно использовать следующую (рис. 1).

Рис. 4.1. Классификация экологических факторов

Антропогенные факторы - это все формы деятельности человеческого общества, изменяющие природу как среду обитания живых организмов или непосредственно влияющие на их жизнь. Выделение антропогенных факторов в отдельную группу обусловлено тем, что в настоящее время судьба растительного покрова Земли и всех ныне существующих видов организмов практически находится в руках человеческого общества.

Все экологические факторы в общем случае могут быть сгруппированы в две крупные категории: факторы неживой, или косной, природы, называемые иначе абиотическими или абиогенными , и факторы живой природы - биотические или биогенные . Но по своему происхождению обе группы могут быть как природными , так и антропогенными , т. е. связанными с влиянием человека. Иногда различают антропические и антропогенные факторы. К первым относят лишь прямые воздействия человека на природу (загрязнение, промысел, борьбу с вредителями), а ко вторым - преимущественно косвенные последствия, связанные с изменением качества окружающей среды.



Наряду с рассмотренной, существуют и другие классификации экологических факторов. Выделяют факторы зависимые и независимые от численности и плотности организмов . Например, климатические факторы не зависят от численности животных, растений, а массовые заболевания, вызываемые патогенными микроорганизмами (эпидемии) у животных или растений, безусловно, связаны с их численностью: эпидемии возникают при тесном контакте между индивидуумами или при их общем ослаблении из-за нехватки корма, когда возможна быстрая передача болезнетворного начала от одной особи к другой, а также утрачена сопротивляемость к патогену.

Макроклимат от численности животных не зависит, а микроклимат может существенно изменяться в результате их жизнедеятельности. Если, например, насекомые при их высокой численности в лесу уничтожат большую часть хвои или листвы деревьев, то здесь изменится ветровой режим, освещенность, температура, качество и количество корма, что скажется на состоянии последующих поколений тех же или других, обитающих здесь животных. Массовые размножения насекомых привлекают насекомых-хищников и насекомоядных птиц. Урожаи плодов и семян влияют на изменение численности мышевидных грызунов, белки и ее хищников, а также многих птиц, питающихся семенами.

Можно делить все факторы на регулирующие (управляющие) и регулируемые (управляемые) , что также легко понять в связи с приведенными выше примерами.

Оригинальную классификацию экологических факторов предложил А.С. Мончадский. Он исходил из представлений о том, что все приспособительные реакции организмов к тем или иным факторам связаны со степенью постоянства их воздействия, или, иначе говоря, с их периодичностью. В частности, он выделял:

1. первичные периодические факторы (те, которым свойственна правильная периодичность, связанная с вращением Земли: смена времен года, суточная и сезонная смена освещенности и температуры); эти факторы изначально присущи нашей планете и зарождающаяся жизнь должна была сразу к ним приспосабливаться;

2. вторичные периодические факторы (они являются производными от первичных); к ним относятся все физические и многие химические факторы, например влажность, температура, осадки, динамика численности растений и животных, содержание растворенных газов в воде и др.;

3. непериодические факторы , которым не свойственна правильная периодичность (цикличность); таковы, например, факторы, связанные с почвой, или разного рода стихийные явления.

Разумеется, «непериодично» лишь само тело почвы, подстилающие ее грунты, а динамика температуры, влажности и многих других свойств почвы также связана с первичными периодическими факторами.

Антропогенные факторы однозначно относятся к непериодическим. В числе таких факторов непериодического действия прежде всего - загрязняющие вещества, содержащиеся в промышленных выбросах и сбросах. К природным периодическим и непериодическим факторам живые организмы в процессе эволюции способны вырабатывать адаптации (например, спячка, зимовка и т. п.), а к изменению содержания примесей в воде или воздухе растения и животные, как правило, не могут приобрести и наследственно закрепить соответствующие адаптации. Правда, некоторые беспозвоночные, например растениеядные клещи из класса паукообразных, имеющие в условиях закрытого грунта десятки поколений в году, способны при постоянном применении против них одних и тех же ядохимикатов образовывать устойчивые к яду расы путем отбора особей, наследующих такую устойчивость.

Необходимо подчеркнуть, что к понятию «фактор» следует подходить дифференцированно, учитывая, что факторы могут быть как прямого (непосредственного), так и опосредованного действия. Различия между ними состоят в том, что фактор прямого действия можно выразить количественно, в то время как факторы непрямого действия - нет. Например, климат или рельеф могут быть обозначены в основном словесно, но они определяют режимы факторов прямого действия - влажности, длины светового дня, температуры, физико-химических характеристик почвы и др.

Абиотические факторы – это совокупность важных для организмов свойств неживой природы.

Абиотическая компонента наземной среды представляет совокупность климатических и почвенно – грунтовых факторов, воздействующих как друг на друга, так и на живые существа.

Температура

Диапазон существующих во Вселенной температур равен 1000 градусов, и по сравнению с ним пределы, в которых может существовать жизнь, очень узки (около 300 0) от -200 0 С до +100 0 С (в горячих источниках на дне Тихого океана у входа в Калифорнийский залив обнаружены бактерии, для которых оптимальна температура 250 0 С). Большинство видов и большая часть активности приурочены к ещё более узкому диапазону температур. Верхний температурный предел для бактерий горячих источников лежит около 88 0 С, для сине-зелёных водорослей около 80 0 С,а для самых устойчивых рыб и насекомых - около 50 0 С.

Диапазон колебаний температур в воде меньше, чем на суше и диапазон толерантности к температуре у водных организмов уже, чем у наземных животных. Таким образом, температура представляет важный и очень часто лимитирующий фактор. Температура очень часто создаёт зональность и стратификацию в водных и наземных местообитаниях. Легко поддаётся измерению.

Изменчивость температуры крайне важна с экологической точки зрения. Жизнедеятельность организмов, которые в природе обычно подвергаются воздействию переменных температур, подавляется частично или полностью или замедляется при воздействии постоянной температуры.

Известно, что количество тепла, падающего на горизонтальную поверхность, прямо пропорционально синусу угла стояния солнца над горизонтом. Поэтому в одних и тех же районах наблюдаются суточные и сезонные колебания температуры, и вся поверхность земного шара разделяется на ряд поясов с условными границами. Чем выше широта местности, тем больше угол наклона солнечных лучей к поверхности земли и тем холоднее климат.

Излучение, свет.

В отношении света организмы стоят перед дилеммой: с одной стороны, прямое воздействие света на протоплазму смертельно для организмов, с другой, - свет служит первичным источником энергии, без которой невозможна жизнь. Поэтому, многие морфологические и поведенческие характеристики организмов связаны с решением этой проблемы. Эволюция биосферы в целом была направлена главным образом, на укрощение поступающего солнечного излучения, использование его полезных составляющих и ослабление вредных или на защиту от них. Освещённость играет важнейшую роль для всего живого и организмы физиологически адаптированы к смене дня и ночи, к соотношению тёмного и светлого периода суток. Практически у всех животных существуют суточные ритмы, связанные со сменой дня и ночи. По отношению к свету растения подразделяют на светолюбивые и тенелюбивые.

Излучение представляет собой электромагнитные волны разной длины. Через атмосферу Земли легко проходит свет, соответствующий двум областям спектра. Это видимый свет (48%) и соседние с ним области (УФ – 7%, ИК – 45%), а также радиоволны длиной более 1 см. Видимая, т.е. воспринимаемая человеческим глазом область спектра охватывает диапазон волн от 390 до 760 нм. Преимущественное значение для жизни имеют инфракрасные лучи, а в процессах фотосинтеза наиболее важную роль играют оранжево-красные и ультрафиолетовые лучи. Количество энергии солнечной радиации, проходящей через атмосферу к поверхности Земли, практически постоянно и оценивается приблизительно в 21*10 23 кДж. Эту величину называют солнечной постоянной. Но приход солнечной энергии в различные точки поверхности Земли неодинаков и зависит от продолжительности дня, угла падения лучей, прозрачности атмосферного воздуха и т.д. Поэтому чаще солнечную постоянную выражают в количестве джоулей, приходящихся на 1см 2 поверхности в единицу времени. Её среднее значение составляет около 0,14 Дж/см 2 в 1с. С лучистой энергией связана освещённость земной поверхности, которая определяется продолжительностью и интенсивностью светового потока.

Солнечная энергия не только поглощается поверхностью земли, но и частично ею отражается. От того, какую долю энергии солнечной радиации поглотит поверхность, зависит общий режим температуры, влажности.

Влажность атмосферного воздуха

Связана с насыщением его водяными парами. Наиболее богаты влагой нижние слои атмосферы (1,5 - 2,0 км.), где концентрируется ок.50% всей влаги. Количество водяного пара, содержащегося в воздухе, зависит от температуры воздуха. Чем выше температура, тем больше влаги содержит воздух. Однако при конкретной температуре воздуха существует определённый предел насыщения его парами воды, который называют максимальным. Обычно насыщение воздуха парами воды не достигает максимального, и разность между максимальным и данным насыщением носит название дефицита влажности. Дефицит влажности - важнейший экологический параметр, т.к. он характеризует сразу две величины: температуру и влажность. Чем выше дефицит влажности, тем суше и теплее и наоборот. Повышение дефицита влажности в определённые отрезки вегетационного периода способствует усиленному плодоношению растений, а у ряда животных, например насекомых, приводит к размножению вплоть до вспышек.

Осадки

Осадки представляют собой результат конденсации водяных паров. Благодаря конденсации в приземном слое воздуха образуются росы, туманы, а при низких температурах наблюдается кристаллизация влаги (иней). Вследствие конденсации и кристаллизации паров воды в более высоких слоях атмосферы формируются облака и атмосферные осадки. Осадки - одно из звеньев в круговороте воды на Земле, причём в их выпадении прослеживается резкая неравномерность, в связи с чем выделяют гумидные (влажные) и аридные (засушливые) зоны. Максимальное количество осадков выпадает в зоне тропических лесов (до 2000 мм. в год) в то время как в засушливых зонах - 0,18мм. в год (в пустыне тропического пояса). Зоны с количеством осадков менее 250мм. в год считаются засушливыми.

Газовый состав атмосферы

Состав относительно постоянен и включает преимущественно азот и кислород, с примесью СО 2 и Ar (аргона). В верхних слоях атмосферы содержится озон. Присутствуют твёрдые и жидкие частицы (воды, оксиды различных веществ, пыль и дымы). Азот - важнейший биогенный элемент, участвующий в образовании белковых структур организмов; кислород - обеспечивает окислительные процессы, дыхание; озон - экранирующая роль по отношению к УФ части солнечного спектра. Примеси мельчайших частиц влияют на прозрачность атмосферы, препятствуя прохождению солнечных лучей к поверхности Земли.

Движение воздушных масс (ветер).

Причина ветра - неодинаковый нагрев земной поверхности, связанный с перепадами давления. Ветровой поток направлен в сторону меньшего давления, т.е. туда, где воздух более прогрет. В приземном слое воздуха движение воздушных масс оказывает влияние на режим температуры, влажности, испарение с поверхности Земли и транспирацию растений. Ветер - важный фактор переноса и распределения примесей в атмосферном воздухе.

Давление атмосферы.

Нормальным считается давление 1кПа, соответствующее 750,1 мм. рт. ст. В пределах земного шара существуют постоянные области высокого и низкого давления, причём в одних и тех же точках наблюдаются сезонные и суточные минимумы и максимумы давления.