Тандемная масс спектрометрия анализ крови. Что такое тандемная масс-спектрометрия


Описание

Подготовка

Показания

Интерпретация результатов

Документы к заполнению

Описание

Метод определения

Тандемная масс-спектрометрия с ионизацией в электроспрее.

Исследуемый материал Капиллярная кровь, собранная на специальную карточку-фильтр №903

Доступен выезд на дом

Анализ спектра аминокислот и ацилкарнитинов методом тандемной масс-спектрометрии (ТМС)

Что такое нарушения метаболизма? Наследственные нарушения метаболизма или по-другому обмена веществ - это около 500 различных заболеваний, которые обусловлены нарушением работы особых биохимических катализаторов - ферментов. Ферменты обеспечивают процессы расщепления аминокислот, органических кислот, жирных кислот и других биомолекул. Многие ошибочно считают, что поскольку заболевания этой группы встречаются крайне редко, то и исключать их нужно в последнюю очередь. Однако по данным литературы*, наследственными нарушениями метаболизма страдает один из 3000 новорождённых!

Особое место среди этих заболеваний занимают болезни, которые начинаются в раннем детском возрасте. Эти заболевания часто сочетаются с тяжёлой неонатальной патологией и/или протекают под маской таких состояний как сепсис, перинатальное поражение нервной системы, внутриутробная инфекция. Позднее выявление заболеваний этой группы может привести к тяжёлой инвалидности или даже летальному исходу. Установлено, что 5%** всех случаев «синдрома внезапной смерти младенцев» - следствие наследственных нарушений метаболизма. Однако некоторые из этих заболеваний эффективно лечатся при своевременной диагностике. Одним из современных методов диагностики нарушений метаболизма является тандемная масс-спектрометрия (ТМС). Этот метод позволяет определить в небольшом количестве биологического материала (капля высушенной крови) , что позволяет с определённой вероятностью заподозрить наследственное заболевание. В некоторых странах этим методом проводится обследование всех новорождённых на 10-30 наследственных нарушений метаболизма. Другими словами, все новорождённые подвергаются специальному биохимическому исследованию называемому скрининг. * Vilarinho L, Rocha H, Sousa C, Marcão A, Fonseca H, Bogas M, Osório RV. Four years of expanded newborn screening in Portugal with tandem mass spectrometry. J Inherit Metab Dis. 2010 Feb 23 ** Olpin SE The metabolic investigation of sudden infant death. Ann Clin Biochem, 2004, Jul 41 (Pt4), 282-293 **Opdal SH, Rognum TO The sudden Infant Death Syndrome Gene: Does It Exist? Pediatrics, 2004, V.114, N.4, pp. e506-e512 Что такое скрининг? Скрининг (от англ. Screening – просеивание) — это массовое обследование пациентов для выявления различных заболеваний, ранняя диагностика которых позволяет предотвратить развитие тяжёлых осложнений и инвалидности. На какие заболевания проводится обязательное скрининговое обследование новорождённых в нашей стране? В России существует государственная программа, которая включает в себя обязательное обследование (скрининг) всех новорождённых только на 5 наследственных заболеваний: фенилкетонурии (ФКУ), муковисцидоза, галактоземии, адреногенитального синдрома и врождённого гипотиреоза.

Обращаем Ваше внимание на то, что из этого перечня в состав исследования «ПЯТОЧКА» входит только скрининг на фенилкетонурию (полный перечень выявляемых наследственных болезней обмена веществ при помощи скринига «ПЯТОЧКА» см. ниже по тексту).

На какие заболевания можно обследовать ребёнка дополнительно? Скрининга новорождённых, направленного на диагностику нарушений метаболизма методом ТМС, в России на настоящий момент не проводится. В России это исследование пока проводится по назначению врача при наличии подозрений на наследственные болезни обмена веществ, хотя многие из заболеваний этой группы проявляют себя не сразу после рождения, но при этом уже есть у новорождённого. Однако, уже упомянутым ранее методом тандемной масс-спектрометрии (ТМС) можно дополнительно обследовать новорождённого ребенка на исключение 37 различных наследственных заболеваний, которые относятся к нарушениям обмена аминокислот, органических кислот и дефектам ß -окисления жирных кислот. Аминоацидопатии Аминоацидопатии развиваются вследствие недостатка специфических ферментов, необходимых для метаболизма аминокислот. Это приводит к аномально высокому уровню аминокислот и их производных в крови и моче, которые оказывают токсическое действие на клетки и ткани организма. Основные симптомы: задержка развития, судороги, коматозные состояния, рвота, диарея, необычный запах мочи, нарушения зрения и слуха. Лечение заключается в назначении специальной диеты и витаминов. Эффективность терапии зависит от того, насколько рано и точно установлен диагноз. К сожалению, некоторые заболевания из этой группы не поддаются лечению. Органические ацидурии/ацидемии Органические ацидурии/ацидемии являются результатом нарушения химического расщепления аминокислот вследствие недостаточной активности ферментов. Их клинические проявления схожи с проявлениями аминоацидопатий. Лечение заключается в назначении специальной диеты и/или витаминов. К сожалению, некоторые заболевания из этой группы не поддаются лечению. Дефекты ß-окисления жирных кислот ß-окисление жирных кислот – многоступенчатый процесс их расщепления, в результате которого образуется энергия, необходимая для жизнедеятельности клетки. Каждый шаг процесса окисления производится под действием специфических ферментов. При отсутствии одного из ферментов процесс нарушается. Симптомы: сонливость, кома, рвота, низкий уровень сахара в крови, поражение печени, сердца, мышц. Лечение заключается в назначении низкожировой диеты с частым и дробным кормлением, других специализированных диетических продуктов, а также, левокарнитина. Полный перечень выявляемых наследственных болезней обмена веществ

  1. Болезнь с запахом кленового сиропа мочи (лейциноз).
  2. Цитрулинемия тип 1, неонатальная цитрулинемия.
  3. Аргининосукциновая ацидурия (АСА)/ недостаточность аргининосукцинат лиазы лиазы.
  4. Недостаточность орнитин транскарбамилазы.
  5. Недостаточность карбамилфосфат синтазы.
  6. Недостаточность N-ацетилглютамат синтазы.
  7. Некетотическая гиперглицинемия.
  8. Тирозинемия тип 1.
  9. Тирозинемия тип 2.
  10. Гомоцистинурия/недостаточность цистатионин бета-синтетазы.
  11. Фенилкетонурия.
  12. Аргининемия/недостаточность аргиназы.
  13. Пропионовая ацидемия (недостаточность пропионил КоА карбоксилазы).
  14. Метилмалоновая ацидемия.
  15. Изовалериановая ацидемия (недостаточность изовалерил КоА дегидрогеназы).
  16. Недостаточность 2-метилбутирил КоА дегидрогеназы.
  17. Недостаточность изобутирил КоА дегидрогеназы.
  18. Глутаровая ацидемия тип 1 (недостаточность глутарил КоА дегидрогеназы тип 1).
  19. Недостаточность 3-метилкротонил КоА карбоксилазы.
  20. Множественная карбоксилазная недостаточность.
  21. Недостаточность биотинидазы.
  22. Малоновая ацидемия (недостаточность малонил КоА декарбоксилазы).
  23. Недостаточность митохондриальной ацетоацетил КоА тиолазы.
  24. Недостаточность 2-метил-3-гидроксибутирил КоА дегидрогеназы.
  25. Недостаточность 3-гидрокси-3-метилглутарил КоА лиазы.
  26. Недостаточность 3-метилглутаконил КоА гидратазы.
  27. Недостаточность среднецепочечной ацил-КоА дегидрогеназы.
  28. Недостаточность очень длинноцепочечной ацил-КоА дегидрогеназы.
  29. Недостаточность короткоцепочечной ацил-КоА дегидрогеназы.
  30. Недостаточность длинноцепочечной 3-гидроксиацил-КоА дегидрогеназы (дефект трифункционального белка).
  31. Глутаровая ацидемия тип II (недостаточность глутарил КоА дегидрогеназы тип II), множественная недостаточность ацил-КоА дегидрогеназ.
  32. Нарушение транспорта карнитина.
  33. Недостаточность карнитин палмитоил трансферазы тип I.
  34. Недостаточность карнитин палмитоил трансферазы тип II.
  35. Недостаточность карнитин/ацилкарнитин транслоказы.
  36. Недостаточность 2,4-диеноил КоА редуктазы.
  37. Недостаточность среднецепочечной 3-кетоацил-КоА тиолазы.
  38. Недостаточность средне-/короткоцепочечной ацил-КоА дегидрогеназы.

Материал для исследования: капиллярная кровь, собранная на специальную карточку-фильтр №903.

Литература

  1. Chace D.H., Kalas T.A., Naylor E.W. The application of tandem mass spectrometry to neonatal screening for inherited disorders of intermediary metabolism. Annu Rev Genomics Hum Genet. 2002; vol. 3; p. 17-45.
  2. Leonard J.V., Dezateux C. Screening for inherited metabolic disease in newborn infants using tandem mass spectrometry. BMJ. 2002; vol. 324(7328); p. 4-5.
  3. Millington D., Kodo N., Terada N., Roe D., Chace D. The analysis of diagnostic markers of genetic disorders in human blood and urine using tandem mass spectrometry with liquid secondary ion mass spectrometry.1991 Int.J.Mass Spectr.Ion Process. 111:211-28.
  4. Chace D.H. Mass spectrometry in the clinical laboratory. Chem Rev. 2001 Feb;101(2):445-77.
  5. Duran M., Ketting D., Dorland L., Wadman S.K. The identification of acylcarnitines by desorption chemical ionization mass spectrometry. J Inherit Metab Dis. 1985;8 Suppl 2:143-4.
  6. Millington D.S., Kodo N., Norwood D.L., Roe C.R. Tandem mass spectrometry: a new method for acylcarnitine profiling with potential for neonatal screening for inborn errors of metabolism. J Inherit Metab Dis. 1990;13(3):321-4.
  7. Chace D.H., DiPerna J.C., Mitchell B.L., Sgroi B., Hofman L.F., Naylor E.W.. Electrospray tandem mass spectrometry for analysis of acylcarnitines in dried postmortem blood specimens collected at autopsy from infants with unexplained cause of death. Clin Chem. 2001;47(7):1166-82.
  8. Rashed M.S., Bucknall M.P., Little D., Awad A., Jacob M., Alamoudi M., Alwattar M., Ozand P.T. Screening blood spots for inborn errors of metabolism by electrospray tandem mass spectrometry with a microplate batch process and a computer algorithm for automated flagging of abnormal profiles. Clin Chem. 1997 Jul; 43(7):1129-41.
  9. Millington D.S., Terada N., Chace D.H., Chen Y.T., Ding J.H., Kodo N., Roe C.R. The role of tandem mass spectrometry in the diagnosis of fatty acid oxidation disorders. Prog Clin Biol Res. 1992; 375:339-54.
  10. Rashed M.S., Ozan P.T., Harrison M.E., Watkins P.J.F., Evans S. 1994. Electrospray tandem mass spectrometry in the analysis of organic acidemias. Rapid Commun. Mass Spectrom. 8:122-33
  11. Vreken P., van Lint A.E., Bootsma A.H., Overmars H., Wanders R.J., van Gennip A.H. Rapid diagnosis of organic acidemias and fatty-acid oxidation defects by quantitative electrospray tandem-MS acyl-carnitine analysis in plasma. Adv Exp Med Biol. 1999; 466:327-37.
  12. Griffiths W.J., Jonsson A..P, Liu S., Rai D.K., Wang Y. Electrospray and tandem mass spectrometry in biochemistry. Biochem J. 2001 May 1; 355(Pt 3):545-61.
  13. Dooley K.C. Tandem mass spectrometry in the clinical chemistry laboratory. Clin Biochem. 2003 Sep; 36(6):471-81.
  14. Михайлова С.В., Ильина Е.С., Захарова Е.Ю., Байдакова Г.В., Бембеева Р.Ц., Шехтер О.В., Захаров С.Ф. «Множественная карбоксилазная недостаточность, обусловленная мутациями в гене биотинидазы// Медицинская генетика. - 2005. - №2. - C. 633-638.
  15. Байдакова Г.В., Букина А.М., Гончаров В.М., Шехтер О.В., Букина Т.М., Покровская А.Я., Захарова Е.Ю., Михайлова С.В., Федонюк И.Д., Колпакчи Л.М., Семыкина Л.И., Ильина Е.С. Диагностика наследственных болезней обмена веществ на основе сочетания методов тандемной масс-спектрометрии и энзимодиагностики, Медицинская генетика, 2005, т. 4, №1, с. 28-33.
  16. Захарова Е.Ю., Ильина Е.С., Букина А.М., Букина Т.М., Захаров С.Ф., Михайлова С.Ф., Федонюк И.Д., Байдакова Г.В., Семыкина Л.И., Колпакчи Л.М., Зайцева М.Н. «Результаты проведения селективного скрининга на наследственные болезни обмена веществ среди пациентов психоневрологических отделений». Второй Всероссийский Конгресс, «Современные технологии в педиатрии и детской хирургии», Материалы Конгресса, стр. 141-142.
  17. Baidakova G.V., Boukina A.M., Boukina T.M., Shechter O.V., Michaylova S.V. I’lina E.S, Zakharova E.Yu Combination of tandem mass spectrometry and lysosomal enzymes analysis - effective tool for selective screening for IEM in neurological clinic. SSIEM 41st Annual Symposium, Amsterdam, August 31- September 3, 2004.
  18. Mikhaylova S.V., Baydakova G.V., Zakharova E.Y., Il’ina E.S. First cases of biotinidase deficiency in Russia. European Journal of Human Genetics Vol.13-Supplement1-May, 2005, p. 386.
  19. Байдакова Г.В., Захарова Е.Ю., Зинченко Р.А. Недостаточность среднецепочечной ацил-КоА-дегидрогеназы жирных кислот. Материалы V съезда Российского общества медицинских генетиков, Уфа, май 2005, Медицинская Генетика, т. 4, № 4, с. 153.
  20. Захарова Е.Ю., Байдакова Г.В., Шехтер О.В., Ильина Е.С., Михайлова С.В. Тандемная масс-спектрометрия – новый подход диагностики наследственных нарушений обмена веществ, Материалы V съезда Российского общества медицинских генетиков, Уфа, май 2005, Медицинская Генетика, т. 4, №4, с.188.
  21. Mikhaylova S.V., Zakharova E.Y, Baidakova G.V., Shehter O.V., Ilina E.S Clinical outcome of glutaric aciduria type I in Russia. J.Inherit. Metab.Dis 2007, v. 30, p. 38 22. Baydakova GV, Tsygankova PG. Diagnosis of mitochondrial β-oxidation defects in Russia. J Inherit Metab Dis (2008) 31 (Suppl 1) p.39

Подготовка

Что делать, если необходимо обследовать ребёнка на наследственные нарушения метаболизма?

  • По назначению врача или самостоятельно в любом медицинском офисе ИНВИТРО необходимо заранее приобрести набор для проведения исследования, в который входит:

Подготовка к исследованию и правила взятия крови у новорождённых

  1. Взятие образцов крови у новорождённых детей осуществляется в родовспомогательных учреждениях специально подготовленным сотрудником, а в случае ранней выписки новорождённого (до 4 дня жизни) - специально подготовленной патронажной сестрой.
  2. При обследовании новорождённых взятие пробы крови следует проводить не ранее 4-х суток у доношенных и 7-х суток у недоношенных детей. У новорождённых кровь берут из пяточки, у детей старше 3 мес - из пальца.
  3. У новорождённых от начала полного грудного или искусственного вскармливания до взятия крови должно пройти не менее 4-х суток. Взятие крови проводят через 3 часа после кормления (у новорождённых - перед очередным кормлением).
  4. Перед взятием крови у новорождённого стопу ребёнка необходимо тщательно вымыть мылом, протереть стерильным тампоном, смоченным 70% спиртом, а затем обработанное место промокнуть стерильной сухой салфеткой!
  5. Прокол делают одноразовым стерильным скарификатором на глубину 2,0 мм (зоны прокола изображены на ). Первую каплю крови удаляют стерильным сухим тампоном.
  6. Мягким надавливанием на пятку способствуют накоплению второй капли крови, к которой перпендикулярно прикладывают специальную карточку из фильтровальной бумаги и пропитывают полностью и насквозь 5 зон, очерченных круговой линией. Пятна крови должны быть не меньше указанного на бланке размера, вид пятен должен быть одинаков с обеих сторон , . Никогда не используйте противоположную сторону фильтровальной бумаги для заполнения окружностей.
  7. После взятия крови осушите зону прокола стерильным тампоном и наклейте бактерицидный пластырь на участок прокола. Внимание! От качества взятия крови зависит точность и достоверность исследования!
  8. Специальную карточку из фильтровальной бумаги высушивают не менее 2 - 4 часов при комнатной температуре. Избегайте попадания прямых солнечных лучей! Для этого отведите внешний клапан карточки и подведите его край под противоположную поверхность фильтра (где не обозначены окружности), . После полного высыхания капель крови переместите клапан карточки над поверхностью фильтра. Подпишите Фамилию И. О. ребёнка внизу карточки (Name) и укажите дату взятия крови (Date), . Карточку поместите в маленький конверт и вложите его в предварительно подписанный большой конверт. Заполните направительный бланк заказа и также вложите его в большой конверт.
  9. Передайте большой конверт в ближайший медицинский офис ИНВИТРО (конверт не запечатывается). Сотрудник ИНВИТРО в вашем присутствии проверит содержимое конверта и правильность заполнения бланка заказа.

Хранение и транспортировка: до и после взятия крови набор хранить при комнатной температуре в сухом месте; избегать контакта с системами отопления; избегать попадания прямых солнечных лучей; при транспортировке упаковать набор (наборы) в полиэтиленовый герметично закрывающийся пакет.

Показания к назначению

  • Сходные случаи заболевания в семье.
  • Случаи внезапной смерти ребёнка в раннем возрасте в семье.
  • Резкое ухудшение состояния ребёнка после кратковременного периода нормального развития (бессимптомный промежуток может составлять от нескольких часов до нескольких недель).
  • Необычный запах тела и/или мочи («сладкий», «мышиный», «варёной капусты», «потных ног» и др.).
  • Неврологические нарушения - нарушения сознания (летаргия, кома), различные типы судорожных приступов, изменение мышечного тонуса (мышечная гипотония или спастический тетрапарез).
  • Нарушения ритма дыхания (брадипноэ, тахипноэ, апноэ).
  • Нарушения со стороны других органов и систем (поражение печени, гепатоспленомегалия, кардиомиопатия, ретинопатия).
  • Изменения лабораторных показателей крови и мочи - нейтропения, анемия, метаболический ацидоз/алкалоз, гипогликемия/гипергликемия, повышение активности печёночных ферментов и уровня креатинфосфокиназы, кетонурия.
  • Дополнительная диагностика 37 наследственных болезней обмена веществ наряду с обязательной государственной программой выявления 5-ти наследственных заболеваний: скрининг новорождённых: «ПЯТОЧКА».

Интерпретация результатов

Интерпретация результатов исследований содержит информацию для лечащего врача и не является диагнозом. Информацию из этого раздела нельзя использовать для самодиагностики и самолечения. Точный диагноз ставит врач, используя как результаты данного обследования, так и нужную информацию из других источников: анамнеза, результатов других обследований и т.д.

Единицы измерения в лаборатории ИНВИТРО: мкмоль/литр. Референсные значения для определяемых параметров (детализированная интерпретация результатов)

Общая интерпретация результата

Наследственные заболевания обмена веществ Изменение концентрации метаболитов
Болезнь «с запахом кленового сиропа мочи» (лейциноз) Лейцин Валин
Цитрулинемия тип 1, неонатальная цитрулинемия Цитрулин
Аргининосукциновая ацидурия (АСА)/ недостаточность аргининосукцинат лиазы лиазы Цитрулин
Недостаточность орнитин транскарбамилазы Цитрулин
Недостаточность карбамилфосфат синтазы Цитрулин
Недостаточность N-ацетилглютамат синтазы Цитрулин
Некетотическая гиперглицинемия Глицин
Тирозинемия тип 1 Тирозин
Тирозинемия тип 2 Тирозин
Гомоцистинурия/недостаточность цистатионин бета-синтетазы Метионин
Фенилкетонурия Фенилаланин
Аргининемия/недостаточность аргиназы Аргинин
Пропионовая ацидемия (недостаточность пропионил КоА карбоксилазы) С3
Метилмалоновая ацидемия С3 (С4DC )
Изовалериановая ацидемия (недостаточность изовалерил КоА дегидрогеназы) С5
Недостаточность 2-метилбутирил КоА дегидрогеназы С5
Недостаточность изобутирил КоА дегидрогеназы С4
Глутаровая ацидемия тип 1 (недостаточность глутарил КоА дегидрогеназы тип 1) С5DC
Недостаточность 3-метилкротонил КоА карбоксилазы С5ОН
Множественная карбоксилазная недостаточность С5ОН С3
Недостаточность биотинидазы С5ОН
Малоновая ацидемия (недостаточность малонил КоА декарбоксилазы) С3DC
Недостаточность митохондриальной ацетоацетил КоА тиолазы С5:1 С5ОН
Недостаточность 2-метил-3-гидроксибутирил КоА дегидрогеназы С5:1 С5ОН
Недостаточность 3-гидрокси-3-метилглутарил КоА лиазы С5ОН С6DC
Недостаточность 3-метилглутаконил КоА гидратазы С6DC
Недостаточность среднецепочечной ацил-КоА дегидрогеназы С6 С8 С10 С10:1
Недостаточность очень длинноцепочечной ацил-КоА дегидрогеназы С14 С14:1 С14:2 С16:1
Недостаточность короткоцепочечной ацил-КоА дегидрогеназы С4
Недостаточность длинноцепочечной 3-гидроксиацил-КоА дегидрогеназы (дефект трифункционального белка) С16OH С18ОН С18:1OH С18:2OH
Глутаровая ацидемия тип II (недостаточность глутарил КоА дегидрогеназы тип II), множественная недостаточность ацил-КоА дегидрогеназ С4 С5 С6 С8 С10 С12 С14 С16 С18
Нарушение транспорта карнитина C0 ↓ тотальное снижение ацилкарнитинов
Недостаточность карнитин палмитоил трансферазы тип I С0 С16 ↓ С18:1 ↓ С18:2 ↓
Недостаточность карнитин палмитоил трансферазы тип II C0 ↓ С16 С18:1 С18:2
Недостаточность карнитин/ацилкарнитин транслоказы C0 ↓ С16 С18:1 С18:2
Недостаточность 2,4-диеноил КоА редуктазы С10:2
Недостаточность среднецепочечной 3-кетоацил-КоА тиолазы С6DC С8DC
недостаточность средне-/короткоцепочечной ацил-КоА дегидрогеназы С4ОН С6ОН

Что делать, если в результате исследования выявлено изменение показателей? Необходимо понимать, что изменения, выявленные при ТМС, полностью не подтверждают заболевание, а в ряде случаев, необходимо пройти дополнительные тесты, (см. список дополнительных тестов и ) чтобы убедиться в достоверности выявленных нарушений. Рекомендуется консультация врача-генетика и педиатра, чтобы выработать тактику совместных действий. Используемая литература (референсные значения)

  1. Wiley V., Carpenter K., Wilcken B. Newborn screening with tandem mass spectrometry: 12 months’ experience in NSW Australia. Acta Paediatrica 1999; 88 (Suppl):48-51.
  2. Rashed MS, Rahbeeni Z, Ozand PT. Application of electrospray tandem mass spectrometry to neonatal screening. Semin Perinatol 1999; 23:183–93.
  3. Schulze A., Lindner M., Kohlmüller D., Olgemöller K., Mayatepek E., Hoffmann G.F. Expanded Newborn Screening for Inborn Errors of Metabolism by Electrospray Ionization-Tandem Mass Spectrometry: Results, Outcome, and Implications, Pediatrics, 2003; 111; 1399-1406.
  4. Hoffman G., Litsheim T., Laessig R. Implementation of tandem mass spectrometry in Wisconsin’s newborn screening program. MMWR Morb MortalWkly Rep 2001; 50 (RR-3): 26–7.
  5. Lin W.D., Wu J.Y., Lai C.C., Tsai F.J., Tsai C.H., Lin S.P., Niu D.M. A pilot study of neonatal screening by electrospray ionization tandem mass spectrometry in Taiwan. Acta Paediatr Taiwan 2001; 42:224–30.
  6. Zytkovicz T.H., Fitzgerald E.F., Marsden D., Larson C.A., Shih V.E., Johnson D.M., et al. Tandem mass spectrometric analysis for amino, organic, and fatty acid disorders in newborn dried blood spots: a two year summary from the New England Newborn Screening Program. Clin Chem 2001;47:1945–55.

В течение многих лет скрининг в основном выполняли тестами , специфичными для каждого отдельного заболевания. Например, скрининг ФКУ был основан на микробиологической или химической оценке повышения фенилаланина.

Эта ситуация полностью изменилась за последнее десятилетие с появлением технологии тандемной масс-спектрометрии (ТМС). Анализ тандемной масс-спектрометрией (ТМС) может не только точно и быстро выявить повышенный фенилаланин в пятне крови у новорожденного с меньшим числом ложноположительных ответов по сравнению со старыми методами, но также одновременно позволяет обнаружить несколько десятков других биохимических нарушений.

Некоторые из них уже скринировали индивидуальными тестами . Например, многие государства использовали специфические тесты для выявления повышения метионина, чтобы обнаруживать Тандемный масс-спектрометрия (ТМС) оказалась также надежным методом не-онатального скрининга некоторых заболеваний, соответствующих критериям скрининга, но не имевших ранее надежного теста.

Например, недостаточность MCAD - заболевание окисления жирных кислот, обычно бессимптомное, но обнаруживаемое клинически, когда у пациента повышается катаболизм. Обнаружение недостаточности MCAD при рождении может оказаться жизненно важным, поскольку больные дети имеют очень высокий риск жизнеугрожающей гипогликемии в раннем детстве при катаболических состояниях, вызванных интер-куррентными заболеваниями, например вирусной инфекцией.

Почти четверть детей с недиагностированной недостаточностью MCAD умирают при первом же эпизоде . При правильном лечении метаболическое расстройство может быть купировано. При недостаточности MCAD первичная цель скрининга - предупреждение родителей и врачей о риске метаболической декомпенсации, так как дети между приступами практически здоровы и не нуждаются в ежедневном лечении, кроме исключения длительного голодания.

Тем не менее использование тандемной масс-спектрометрии (ТМС) для неонатального скрининга остается под вопросом. Помимо обеспечения быстрого тестирования многих нарушений, неонатальный скрининг при которых уже делается или может быть оправдан, тандемная масс-спектрометрия (ТМС) также выявляет новорожденных с врожденными ошибками метаболизма типа метилмалоновой ацидемии, обычно не входящих в программы скрининга из-за их редкости и трудности обеспечения окончательной терапией, предохраняющей от прогрессирующего неврологического ухудшения.

Заболевания, выявляемые при тандемной масс-спектрометрии

I. Аминоацидемии :
- ФКУ
- Болезнь мочи с запахом кленового сиропа
- Гомоцистинурия
- Цитруллинемия
- Аргининоянтарная ацидурия
- Тирозинемия I типа

II. Органические ацидемии :
- Пропионовая ацидемия
- Метилмалоновая ацидемия
- Изовалериановая ацидемия
- Изолированная 3-метил-кротонил-глицинемия
- Глутаровая ацидемия (тип I)
- Недостаточность митохондриальной ацетоацетил-коА-тиолазы
- Гидроксиметилглутаровая ацидемия
- Недостаточность множества коА-карбоксилаз

III. Нарушения окисления жирных кислот :
- Недостаточность SCAD
- Недостаточность гидрокси-SCAD
- Недостаточность MCAD
- Недостаточность VLCAD
- Недостаточность LCAD и недостаточность трифункционального белка
- Глутаровая ацидемия II типа
- Недостаточность карнитин-пальмитоилтрансферазы II

Тандемная масс-спектрометрия (ТМС) также может идентифицировать аномальные метаболиты с неопределенным значением для здоровья. Например, недостаточность SCAD - другое заболевание окисления жирных кислот, чаще всего бессимптомное, хотя некоторые пациенты могут иметь трудности, связанные с эпизодической гипогликемией. Таким образом, прогностическая ценность положительного результата анализа тандемной масс-спектрометрии (ТМС) для симптоматической SCAD, вероятно, будет очень низкой.

Перевешивает ли преимущество обнаружения недостаточности SCAD отрицательное влияние теста, вызывающее неоправданное беспокойство родителей, для большинства новорожденных с положительным результатом теста, так никогда и не проявивших клинических симптомов? Таким образом, не каждое заболевание, обнаруживаемое методом тандемной масс-спектрометрии (ТМС), соответствует критериям для неонатального скрининга.

Именно поэтому некоторые эксперты в системе здравоохранения доказывают, что родителям и врачам нужно сообщать только об отклонениях в метаболитах с доказанной клинической пользой. Другие отстаивают использование всей информации, предоставляемой тандемной масс-спектрометрией (ТМС), и предлагают сообщать родителям и врачам обо всех аномальных метаболитах, независимо от того, насколько хорошо заболевание соответствует стандартным критериям неонатального скрининга. В дальнейшем можно тщательно наблюдать за пациентами с аномалиями неизвестного значения. По всем этим причинам использование тандемной масс-спектрометрии (ТМС) для скрининга новорожденных и остается предметом дискуссии.

Для популяционного скрининга в дородовом периоде обычно используют два теста: хромосомный анализ у женщин старшего возраста и АФП сыворотки крови матери или тройной тест на ДНТ и хромосомные анеуплоидии.

Если беременность подвергается риску из-за ин-вазивной процедуры пренатальной диагностики хромосомной анеуплоидии вследствие возраста матери, также следует предложить дополнительное обследование, например определение уровня АФП в амниотической жидкости, полногеномную сравнительную гибридизацию для поиска опасных субмикроскопических делеций, скрининг мутаций муковисцидоза и других частых заболеваний.

Тандемная масс-спектрометрия - один из современных методов анализа соединений, который широко используется для различных как научных, так и практических целей. Этот метод позволяет проводить анализ нескольких сотен соединений в микроколичествах биологического материала. В мировой практике здравоохранения этот метод используют для проведения массового скрининга новорожденных на наследственные болезни обмена веществ (НБО). В пятне высушенной крови возможно определение аминокислот (в том числе и фенилаланина) и ацилкарнитинов. Количественное определение этих веществ позволяет исключать несколько десятков наследственных заболеваний, относящихся к различным классам НБО (нарушения метаболизма аминокислот, органических кислот и дефектов митохондриального b-окисления жирных кислот). Ранее для диагностики этих нарушений требовалось большое количество биологического материала, проведение нескольких исследований (аминокислотный анализ, хроматомасс-спектрометрия, определение спектра ацилкарнитинов), что требовало значительного времени и материальных затрат. ТМС позволяет количественно определить все эти соединения в течение одного анализа! Наследственные нарушения метаболизма аминокислот, органических кислот и дефектов митохондриального бета-окисления жирных кислот насчитывают около 100 нозологических форм, большинство из которых манифестирует в неонатальном периоде. Их частота составляет более 1:5000 живых новорожденных. Многие врачи ошибочно считают, что заболевания этой группы встречаются так редко, что исключать их нужно только в последнюю очередь, и очень часто правильный диагноз устанавливается уже на поздних сроках или заболевание вообще не диагностируется.

При проведении анализа определяется 52 показателя (аминокислоты и ацилкарниины)

У нашего малыша приступы начались в 2,5 месяца, но ничего не предвещало их начало. Беременность и роды прошли хорошо, наследственности никакой нет. Поэтому для нас стало очень важно найти причину эпилепсии нашего малыша, что бы понять, как скорректировать лечение и можно ли нам еще планировать детей.

Прежде всего в срочном порядке, если это только что случилось с вашим ребенком и вы не знаете причину приступов, вам необходимо сдать:

1) Кровь на «ТМС» (Тандемная масс-спектрометрия (спектр ацилкарнитинов, аминокислот)). Имейте в виду, что сдается капиллярная кровь на специальном бланке.

2) Мочу дневную и утреннюю на «Газовую хроматографию образцов мочи (органические ацидурии)»
Если у вашего ребенка что то из списка наследственных болезней обмена, то чем быстрее вы это выясните, тем быстрее сможете начинать специальное лечение и шансов, что ребенок будет нормально развиваться будет больше. Время здесь против вас.

Мы сдавали эти анализы в (в народе, просто «центр на Москваречье, д.1»). Сайт К сожалению, кровь на ТМС там делают около 14 дней. Поэтому для скорости, мы сдали кровь на ТМС еще и в МЦ «Геномед» . Так у вас есть шанс получить результаты быстрее, ну и сравнить из когда получите оба заключения.

Если приступы у вашего ребенка начались в неонатальном периоде, то есть смысл сдать кровь на «Панель "НБО c началом в неонатальный период" (аминокислоты, ацилкарнитины, органические кислоты мочи, очень длинноцепочечные жирные кислоты, изофокусирование трансферинов)» в Медико-генетическом научном центре (в народе, просто «центр на Москваречье, д.1»).

3) Анализ «Скрининг-тесты на ЛБН в Медико-генетическом научном центре (в народе, просто «центр на Москваречье, д.1»). Это определение активности лизосомных ферментов в пятнах высушенной крови:β-D-глюкозидаза, a-D-глюкозидаза, a-L-идуронидаза,сфингомиелиназа, галактоцереброзидаза, а-галактозидаза)»Так же когда мы привезли высушенные капли капиллярной крови для анализа ТМС, мы попросили на этих же каплях крови сделать еще на всякий случай, раз можно одну и ту же кровь использовать для двух анализов. Это мы так же сделали в Медико-генетическом научном центре (в народе, просто «центр на Москваречье, д.1»).

4) Анализ «Активность биотинидазы» в Медико-генетическом научном центре (в народе, просто «центр на Москваречье, д.1»). Как нам объяснили, этот параметр есть в перечне анализа «кровь на ТМС», но иногда во время общего анализа показывает норму, а если пересдать на конкретно биотинидазу, то может показать отклонение. Делается 1-2 недели.

5) Анализ Панель "Наследственные эпилепсии " в МЦ «Геномед» (стоимость 33 000 руб). Делайте сразу, т.к. делают ее по сути 4-5 календарных месяцев. А время не ждет. Там собраны все поломки в генах, которые могут вызывать эпилепсию. Если же найдут поломку в гене, то есть шанс узнать о том как проходит лечение у детей с такой же поломкой в гене. После анализа обязательно запишитесь на консультацию, лучше к .

По генетике есть центры в Германии и США . Можете списаться с ними.

6) Анализ «Хромосомный микроматречный анализ расширенный » в МЦ «Геномед» (стоимость 30 000 руб). Это на подобие кариотипа, только тщательнее. Ищут поломку в хромосомах, которая может вызывать отклонения в развитии. Делают 14-30 дней.

7) Центр орфанных и других редких заболеваний у детей при Морозовской больнице . Мы еще там не были, но планируем к ним сходить со всеми анализами, что бы они нам подсказали, какие еще можно сдать анализы для поиска причины эпилепсии у нашего малыша. Дополним информацию после посещения.

8) Михайлова С.В.- зав.отделением медицинской генетики при РДКБ Все ваши анализы можно выслать на электронную почту, в теме указать для Михайловой С.В. . Ей передадут ваши анализы и в течение нескольких дней вам пришлют протокол заседания, в котором укажут, какие анализы вам еще можно сделать и к кому рекомендуют обратиться.

9) Захарова Е.Ю - зав. Лабораторией наследственных болезней обмена при Медико-генетическом научном центре (Москворечье,1). Вы так же можете выслать письмо на эл.адрес (в теме указать для Захаровой Е.Ю.), с описанием течения болезни, с вашими анализами и попросить посоветовать, какие еще анализы можно сдать.

10) Харьковский специализированный медико-генетический центр (ХСМГЦ) под руководством д.м.н. Гречаниной Юлии Борисовны. На форуме «Дети ангелы» есть целая тема про этот институт, в который поездом можно выслать мочу для анализа. Вы присылаете вашу историю болезни, все анализы, заключения на электронную почту, высылаете мочу поездом и вам дают рекомендации специалисты центра.