Какие ядра при делении выделяют наибольшую энергию. Ядер деление


В 1934 г. Э. Ферми решил получить трансурановые элементы, облучая 238 U нейтронами. Идея Э. Ферми заключалась в том, что в результате β - -распада изотопа 239 U образуется химический элемент с порядковым номером Z = 93. Однако идентифицировать образование 93-его элемента не удавалось. Вместо этого в результате радиохимического анализа радиоактивных элементов, выполненного О.Ганом и Ф.Штрассманом, было показано, что одним из продуктов облучения урана нейтронами является барий (Z = 56) – химический элемент среднего атомного веса, в то время как согласно предположению теории Ферми должны были получаться трансурановые элементы.
Л. Мейтнер и О. Фриш высказали предположение, что в результате захвата нейтрона ядром урана происходит развал составного ядра на две части

92 U + n → 56 Ba + 36 Kr + xn.

Процесс деления урана сопровождается появлением вторичных нейтронов (x > 1), способных вызвать деление других ядер урана, что открывает потенциальную возможность возникновения цепной реакции деления – один нейтрон может дать начало разветвленной цепи делений ядер урана. При этом число разделившихся ядер должно возрастать экспоненциально. Н. Бор и Дж. Уиллер рассчитали критическую энергию необходимую, чтобы ядро 236 U, образовавшееся в результате захвата нейтрона изотопом 235 U, разделилось. Эта величина равна 6,2 МэВ, что меньше энергии возбуждения изотопа 236 U, образующегося при захвате теплового нейтрона 235 U. Поэтому при захвате тепловых нейтронов возможна цепная реакция деления 235 U. Для наиболее распространенного изотопа 238 U критическая энергия равна 5,9 МэВ, в то время как при захвате теплового нейтрона энергия возбуждения образовавшегося ядра 239 U составляет только 5,2 МэВ. Поэтому цепная реакция деления наиболее распространенного в природе изотопа 238 U под действием тепловых нейтронов оказывается невозможной. В одном акте деления высвобождается энергия ≈ 200 МэВ (для сравнения в химических реакциях горения в одном акте реакции выделяется энергия ≈ 10 эВ). Возможности создания условий для цепной реакции деления открыли перспективы использования энергии цепной реакции для создания атомных реакторов и атомного оружия. Первый ядерный реактор был построен Э.Ферми в США в 1942 г. В СССР первый ядерный реактор был запущен под руководством И.Курчатова в 1946 г. В 1954 г. в г. Обнинске начала работать первая в мире атомная электро­станция. В настоящее время электрическая энергия вырабатывается примерно в 440 ядерных реакторах в 30 странах мира.
В 1940 г. Г.Флеров и К.Петржак открыли спонтанное деление урана. О сложности проведения эксперимента свидетельствуют следующие цифры. Парциальный период полураспада по отношению спонтанному делению изотопа 238 U составляет 10 16 –10 17 лет, в то время как период распада изотопа 238 U составляет 4.5∙10 9 лет. Основным каналом распада изотопа 238 U является α-распад. Для того, чтобы наблюдать спонтанное деление изотопа 238 U, нужно было регистрировать один акт деления на фоне 10 7 –10 8 актов α-распада.
Вероятность спонтанного деления в основном определяется проницаемостью барьера деления. Вероятность спонтанного деления увеличивается с увеличением заряда ядра, т.к. при этом увеличивается параметр деления Z 2 /A. В изотопах Z < 92-95 деление происходит преимущественно с образованием двух осколков деления с отношением масс тяжёлого и лёгкого осколков 3:2. В изотопах Z > 100 преобладает симметричное деление с образованием одинаковых по массе осколков. С увеличением заряда ядра доля спонтанного деления по сравнению с α-распадом увеличивается.

Изотоп Период полураспада Каналы распада
235 U 7.04·10 8 лет α (100%), SF (7·10 -9 %)
238 U 4.47·10 9 лет α (100%), SF (5.5·10 -5 %)
240 Pu 6.56·10 3 лет α (100%), SF (5.7·10 -6 %)
242 Pu 3.75·10 5 лет α (100%), SF (5.5·10 -4 %)
246 Cm 4.76·10 3 лет α (99,97%), SF (0.03%)
252 Cf 2.64 лет α (96,91%), SF (3.09%)
254 Cf 60.5 лет α (0,31%), SF (99.69%)
256 Cf 12.3 лет α (7.04·10 -8 %), SF (100%)

Деление ядер. История

1934 г. − Э. Ферми, облучая уран тепловыми нейтронами, обнаружил среди продуктов реакции радиоактивные ядра, природу которых установить не удалось.
Л. Сциллард выдвинул идею цепной ядерной реакции.

1939 г. − О. Ган и Ф. Штрассман обнаружили среди продуктов реакций барий.
Л. Мейтнер и О. Фриш впервые объявили, что под действием нейтронов происходило деление урана на два сравнимых по массе осколка.
Н. Бор и Дж. Уилер дали количественную интерпретацию деления ядра, введя параметр деления.
Я. Френкель развил капельную теорию деления ядер медленными нейтронами.
Л. Сциллард, Э. Вигнер, Э. Ферми, Дж. Уилер, Ф. Жолио-Кюри, Я. Зельдович, Ю. Харитон обосновали возможность протекания в уране цепной ядерной реакции деления.

1940 г. − Г. Флеров и К. Петржак открыли явление спонтанного деления ядер урана U.

1942 г. − Э. Ферми осуществил управляемую цепную реакцию деления в первом атомного реакторе.

1945 г. − Первое испытание ядерного оружия (штат Невада, США). На японские города Хиросима (6 августа) и Нагасаки (9 августа) американскими войсками были сброшены атомные бомбы.

1946 г. − Под руководством И.В. Курчатова был пущен первый в Европе реактор.

1954 г. − Запущена первая в мире атомная электростанция (г. Обнинск, СССР).

Деление ядер. С 1934 г. Э.Ферми стал применять нейтроны для бомбардировки атомов. С тех пор количество устойчивых или радиоактивных ядер, полученных путем искусственного превращения, возросло до многих сотен, и почти все места периодической системы заполнились изотопами.
Атомы, возникающие во всех этих ядерных реак­циях, занимали в периодической системе то же место, что и бомбардированный атом, или соседние места. Поэтому произвело большую сенсацию доказательство Ганом и Штрассманом в 1938 г. того, что при обстреле нейтронами последнего элемента периодической системы
урана происходит распад на элементы, которые стоят в средних частях периодической системы. Здесь выступают различные виды распада. Возникаю­щие атомы в большинстве своем неустойчивы и тотчас же распадаются дальше; у некоторых время полурас­пада измеряется секундами, так что Ган должен был применить аналитический метод Кюри для продления такого быстрого процесса. Важно отметить, что стоя­щие перед ураном элементы, протактиний и торий, также обнаруживают подобный распад под действием нейтронов, хотя для того, чтобы распад начался, требуется более высокая энергия нейтронов, чем в случае урана. Наряду с этим в 1940 г. Г. Н. Флеров и К. А. Петржак обнаружили спонтанное расщепление уранового ядра с самым большим из известных до тех пор периодом полураспада: около 2 ·10 15 лет; этот факт становится явным благодаря освобождающимся при этом нейтронам. Так явилась возможность понять, почему «естественная» периодическая система заканчивается тремя названными элементами. Теперь стали известны трансурановые элементы, но они настолько неустойчивы, что быстро распадаются.
Расщепление урана посредством нейтронов дает те­перь возможность того использования атомной энер­гии, которое уже многим мерещилось, как «мечта Жюля Верна».

М. Лауэ, «История физики»

1939 г. О. Ган и Ф. Штрассман, облучая соли урана тепловыми нейтронами, обнаружили среди продуктов реакции барий (Z = 56)


Отто Ганн
(1879 – 1968)

Деление ядер – расщепление ядра на два (реже три) ядра с близкими массами, которые называют осколками деления. При делении возникают и другие частицы – нейтроны, электроны, α-частицы. В результате деления высвобождается энергия ~200 МэВ. Деление может быть спонтанным либо вынужденным под действием других частиц, чаще всего нейтронов.
Характерной особенностью деления является то, что осколки деления, как правило, существенно различаются по массам, т. е. преобладает асимметричное деление. Так, в случае наиболее вероятного деления изотопа урана 236 U, отношение масс осколков равно 1.46. Тяжёлый осколок имеет при этом массовое число 139 (ксенон), а легкий – 95 (стронций). С учётом испускания двух мгновенных нейтронов рассматриваемая реакция деления имеет вид

Нобелевская премия по химии
1944 г. – О. Ган.
За открытие реакции деления ядер урана нейтронами.

Осколки деления

Зависимость средних масс легкой и тяжелой групп осколков от массы делящегося ядра.

Открытие деления ядер. 1939 г.

Я приехал в Швецию, где Лизе Мейтнер страдала от одиночества, и я, как преданный племянник, решил навестить ее на рождество. Она жила в маленьком отеле Кунгэльв около Гетеборга. Я застал ее за завтраком. Она обдумывала письмо, только что полученное ею от Гана. Я был весьма скептически настроен относительно содержания письма, в котором сообщалось об образовании бария при облучении урана нейтронами. Однако ее привлекла такая возможность. Мы гуляли по снегу, она пешком, я на лыжах (она сказала, что может проделать этот путь, не отстав от меня, и доказала это). К концу прогулки мы уже могли сформулировать некоторые выводы; ядро не раскалывалось, и от него не отлетали куски, а это был процесс, скорее напоминавший капельную модель ядра Бора; подобно капле ядро могло удлиняться и делиться. Затем я исследовал, каким образом электрический заряд нуклонов уменьшает поверхностное натяжение, которое, как мне удалось установить, падает до нуля при Z = 100 и, возможно, весьма мало для урана. Лизе Мейтнер занималась определением энергии, выделяющейся при каждом распаде из-за дефекта массы. Она очень ясно представляла себе кривую дефекта масс. Оказалось, что за счет электростатического отталкивания элементы деления приобрели бы энергию около 200 МэВ, а это как раз соответствовало энергии, связанной с дефектом массы. Поэтому процесс мог идти чисто классически без привлечения понятия прохождения через потенциальный барьер, которое, конечно, оказалось бы тут бесполезным.
Мы провели вместе два или три дня на рождество. Затем я вернулся в Копенгаген и едва успел сообщить Бору о нашей идее в тот самый момент, когда он уже садился на пароход, отправляющийся в США. Я помню, как он хлопнул себя по лбу, едва я начал говорить, и воскликнул: «О, какие мы были дураки! Мы должны были заметить это раньше». Но он не заметил, и никто не заметил.
Мы с Лизе Мейтнер написали статью. При этом мы постоянно поддерживали связь по междугородному телефону Копенгаген – Стокгольм.

О. Фриш, Воспоминания. УФН. 1968. Т. 96, вып.4, с. 697.

Спонтанное деление ядер

В описанных ниже опытах мы использовали метод, впервые предложенный Фришем для регистрации процессов деления ядер. Ионизационная камера с пластинами, покрытыми слоем окиси урана, соединяется с линейным усилителем, настроенным таким образом, что α частицы, вылетающие из урана, не регистрируются системой; импульсы же от осколков, намного превышающие по величине импульсы от α-частиц, отпирают выходной тиратрон и считаются механическим реле.
Была специально сконструирована ионизационная камера в виде многослойного плоского конденсатора с общей площадью 15 пластин в 1000 см. Пластины, расположенные друг от друга на расстоянии 3 мм, были покрыты слоем окиси урана 10-20 мг/см
2 .
В первых же опытах с настроенным для счета осколков усилителем удалось наблюдать самопроизвольные (в отсутствие источника нейтронов) импульсы на реле и осциллографе. Число этих импульсов было невелико (6 в 1 час), и вполне понятно поэтому, что это явление не могло наблю­даться с камерами обычного типа…
Мы склонны думать, что наблюдаемый нами эффект следует приписать осколкам, получающимся в результате спонтанного деления урана…

Спонтанное деление следует приписать одному из невозбужденных изотопов U с периодами полураспада, полученными из оценки наших результатов:

U 238 – 10 16 ~ 10 17 лет,
U
235 – 10 14 ~ 10 15 лет,
U
234 – 10 12 ~ 10 13 лет.

Распад изотопа 238 U

Спонтанное деление ядер

Периоды полураспада спонтанно делящихся изотопов Z = 92 - 100

Первая экспериментальная система с уран-графитовой решёткой была построена в 1941 г. под руководством Э. Ферми. Она представляла собой графитовый куб с ребром длиной 2,5 м, содержащий около 7 т окиси урана, заключенной в железные сосуды, которые были размещены в кубе на одинаковых расстояниях друг от друга. На дне уран-графитовой решётки был помещён RaBe источник нейтронов. Коэффициент размножения в такой системе был ≈ 0.7. Окись урана содержала от 2 до 5% примесей. Дальнейшие усилия были направлены на получение более чистых материалов и к маю 1942 г. была получены окись урана, в которой примесь составляла меньше 1%. Чтобы обеспечить цепную реакцию деления, было необходимо использовать большое количество графита и урана – порядка нескольких тонн. Примеси должны были составлять меньше нескольких миллионных долей. Реактор, собранный к концу 1942 г. Ферми в Чикагском университете, имел форму срезанного сверху неполного сфероида. Он содержал 40 т урана и 385 т графита. Вечером 2 декабря 1942 г. после того, как были убраны стержни нейтронного поглотителя, было обнаружено, что внутри реактора происходит цепная ядерная реакция. Измеренный коэффициент составлял 1.0006. Вначале реактор работал на уровне мощности 0.5 Вт. К 12 декабря его мощность была увеличена до 200 Вт. В дальнейшем реактор был перенесен в более безопасное место, и мощность его была повышена до нескольких кВт. При этом реактор потреблял 0.002 г урана-235 в день.

Первый ядерный реактор в СССР

Здание для первого в СССР исследовательского ядерного реактора Ф-1 было готово к июню 1946 г.
После того как были проведены все необходимые эксперименты, раз­работана система управления и защиты реактора, установлены размеры реактора, проведены все необходимые опыты с моделями реактора, определена плотность нейтронов на нескольких моделях, получены графитовые блоки (так называемой ядерной чистоты) и (после нейтронно-физической проверки) урановые блочки, в ноябре 1946 г. приступили к сооружению реактора Ф-1.
Общий радиус реактора был 3,8 м. Для него потребовалось 400 т графита и 45 т урана. Реактор собирали слоями и в 15 ч 25 декабря 1946 г. был собран последний, 62-й слой. После извлечения так называемых аварийных стержней был произведен подъем регулирующего стержня, начался отсчет плотности нейтронов, и в 18 ч 25 декабря 1946 г. ожил, заработал первый в СССР реактор. Это была волнующая победа ученых - создателей ядерного реактора и всего советского народа. А через полтора года, 10 июня 1948 г., промышленный реактор с водой в каналах достиг критического состояния и вскоре началось промышленное производство нового вида ядерного горючего − плутония.

ДЕЛЕНИЕ ТЯЖЕЛЫХ ЯДЕР

Возможность деления. У самых тяжелых ядер средняя энергия связи нуклона примерно на 1 МэВ ниже, чем у ядер наиболее устойчивых. В таком случае, превращение тяжелого ядра в два более легких ядра должно сопровождаться выделением свободной энергии. Эсли энергетически выгодный процесс не происходит немедленно, то это значит, что его течению препядствует энергетический барьер. Барьер при делении порождается силами поверхностного натяжения, которые представляют собой составляющую ядерных сил, действующую на расположенные на поверхности ядра нуклоны в направлении центра и создающую давление на поверхность – поверхностное натяжение, потенциальная энергия которого минимальна в основном состоянии ядра. Следовательно, отклонение от исходной геометрической формы, которое может привести к делению, связано с работой против сил поверхностного натяжения и возможно только при получении извне энергии, т.е. при возбуждении ядра какой-либо частицей.

Процесс деления энергетически выгоден уже для ядер с массовыми числами более 80. Однако выйгрыш в энергии сначала очень мал, а высота барьера столь велика, что при возбуждении ядер идут реакции с испусканием нуклонов, но не деление. Только у самых тяжелых ядер энергетический барьер оказывается примерно равным энергии связи нуклона, так что распад составных ядер по каналу деления становится существенным по сравнению с распадом по другим каналам, а в некоторых случаях преобладающим. Представление об абсолютных значениях барьеров дают экспериментальные значения порогов деления под действием гамма-квантов:

Эти данные свидетельствуют о том, что потенциальный барьер по отношению к делению у самых тяжелых ядер составляет 5,5-6 МэВ и мало зависит от состава ядра.

Относительно малые значения барьеров делают возможным определения для них вероятности спонтанного деления. По аналогии с альфа-распадом у обладающих волновыми свойствами ядер-продуктов деления вероятность оказаться за пределами энергетического барьера конечной ширины отлична от нуля. Другими словами, если деление энергетически выгодно, то оно с какой-то малой вероятностью оно возможно и без предварительного возбуждения исходного ядра.

Таблица 4.1. Параметры спонтанного деления

Делимые и делящиеся нуклиды. Нуклиды, ядра которых могут делиться под действием каких-либо частиц, называются делимыми. Наибольший интерес представляет деление тяжелых ядер нейтронами, поскольку в результате каждого акта деления появляются новые свободные нейтроны, способные вызвать последующие акты деления, т.е. возникает основа для получения самоподдерживающейся цепной реакции. В отличие от деления под действием гамма-квантов, когда делится ядро-мишень, при возбуждении процесса нейтронами делится ядро с массовым числом, на единицу большим, например:

235 U + n 236 U* (A 1 Z 1) + (A 2 Z 2) (4.1)

И для выяснения возможности деления исходных ядер нужно сравнить энергии возбуждения образующихся при захвате нейтронов составных ядер с энергетическими барьерами. Минимальная энергия возбуждения составного ядра есть энергия связи присоединяющегося к ядру нейтрона. Если эта энергия связи больше энергетического барьера, то исходное ядро может делиться при поглощении нейтронов с любой кинетической энергией. Если же энергия связи меньше барьера, то деление возможно лишь при условии, что кинетическая энергия нейтрона достаточно высока, чтобы в сумме с энергией связи превзойти барьер. Энергии связи захватываемых нейтронов в ядрах, являющихся составными при делении наиболее важных тяжелых нуклидов, приведены ниже:

Энергия связи парного нейтрона всегда больше, чем непарного. По этой причине энергия связи нейтрона в ядрах 234 U, 236 U, 240 Pu оказывается больше энергетического барьера деления, а в ядрах 233 Th и 239 U меньше, поскольку значения барьера мало отличаются для близких по составу ядер. Это обстоятельство обуславливает возможность деления 233 U, 235 U и 239 Pu нейтронами любых энергий. Такие нуклиды называются делящимися. Напротив, 232 Th и 238 U могут делиться нейтронами только с достаточно высокой кинетической энергией. Следовательно, по отношеню к делению эти нуклиды являются пороговыми. Порог у 232 Th около 1,2 МэВ, у 238 U – около 1 МэВ.

Сырьевые нуклиды – четные нуклиды, которые при облучении нейтронами превращаются в нечетные, которые уже становятся делящимися.

Механизм деления. Процесс деления объясняется на основе капельной модели. Если ядру сообщена энергия активации, то в нем возникают колебания, сопровождающиеся отклонением от начальной формы (рис. 4.1). В недеформированном состоянии ядерным силам притяжения противостоят силы кулоновского отталкивания, которые препядствуют наиболее прочной связи нуклонов в ядре. Энергия ядерного притяжения пропорциональна числу частиц, а энергия кулоновского отталкивания – квадрату числа заряженных частиц. Поэтому при деформации ядра-капли и рассредоточении нейтронов и протонов эффективность кулоновского противодействия в каждой половине капли ослабевает. Если энергия активации настолько велика, что Е а >U б (рис. 4.1), то становится возможной критическая деформация (r=r кр) при которой электрические силы уже не препядствуют ядерным силам связать нуклоны более эффективно. Однако это достижимо только в двух новых ядрах, каждое из которых имеет меньше протонов. Увеличение энергии связи участвующих в процессе нуклонов означает, что работа ядерных сил образовала сброс энергии покоя всех нуклонов от начальной величины U нач , принятой на рис. 4.1 за нуль до конечной U кон, что в абсолютных единицах составляет около 180 МэВ.

Рис. 4.1. Энергетическая диаграмма и схема деформаций ядра при делении

(r – расстояние между эффективными центрами зарядов колеблющегося ядра или центрами образования осколков)



Энергия деления. За счет работы ядерных сил два новых ядра – осколки деления оказываются под очень высоким электрическим потенциалом. Электростатическое отталкивание разбрасывает осколки, и потенциальная энергия кулонова поля переходит в кинетическую энергию деления. Двигаясь в веществе осколки ионизируют атомы и их кинетическая энергия превращается в энергию теплового движения частиц среды.

После торможения в среде осколки деления превращаются в нейтральные атомы с ядрами в основных энергетических состояниях и называются продуктами деления. Поскольку делящиеся ядра имеют в своем составе избыток нейтронов по сравнению с устойчивыми ядрами средних массовых чисел, продукты деления пересыщены нейтронами и являются бета-радиоактивными. Каждый из них в среднем претерпевает по три бета-распада прежде чем приобретает стабильность. В редких случаях после бета-распада дочернее ядро образуется в сильновозбужденном состоянии с энергией возбуждения больше энергии связи нейтрона и испускает запаздывающие нейтроны.

Если иметь ввиду ядерный реактор, то представляет интерес количество и распределение выделяющейся при делении энергии. Для деления 235 U тепловыми нейтронами энергетический баланс приведен в таблице 4.2. Значение каждой составляющей зависит от способа деления составного ядра. Энергия захватных гамма-квантов зависит от свойств ядер, поглощающих нейтроны. В ядерных реакторах около половины вторичных нейтронов, остающихся после вычета одного, идущего на следующее деление, поглощаются ураном, остальные захватываются другими веществами (конструкционные материалы активной зоны, теплоноситель). Гамма-излучение, возникающее по реакции (nγ) имеет энергию в диапазоне от 2 до 11 МэВ. Более 5% всей энергии деления уносится нейтрино и не может быть использовано.

Таблица 4.2. Распределение энергии деления 235 U тепловыми нейтронами

Превращающуюся в тепло энергию обычно округляют до 200 МэВ на одно деление, что в пересчете на 1 г разделившегося 235 U дает:

Выделяющаяся при делении тяжелых ядер энергия на порядок больше энергии любой другой ядерной реакции. Правда энергия, приходящаяся на 1 нуклон или единицу массы вещества, несколько меньше, чем во многих других реакциях с участием легких ядер.

Остаточное энерговыделение. Освобождение 6,5% тепловой энергии со сдвигом во времени относительно момента деления приводит к остаточному энерговыделению после прекращения процесса деления. Обилие радиоактивных продуктов деления с разными периодами полураспада приводит к сложной зависимости остаточного энерговыделения от времени. После остановки реактора около1/3 остаточного энерговыделения происходит за 1 мин, около 60% - за 1 час, около 75% - за 1 сут. Однако последующий спад остаточного энерговыделения идет все медленнее.

Продукты деления. При делении тяжелых ядер образуются около 40 различных пар осколков. Сумма массовых чисел в каждой паре осколков при делении 235 U равна 234, так как фактически делится 236 U , а возбужденные осколки испускают два нейтрона. На рис. 4.2 показано распределениевыходов продуктов деления как функции их массового числа. Наибольший выход около 6% относится к массовым числам 95 и 139. самое тяжелое и самое легкое ядра-продукты из зарегистрированных при делении 235 U имеют массовые числа 161 и 72.

Деление на равные по массе осколки маловероятно, что противоречит предсказаниям капельной модели. Деление на неравные части объясняется в рамках оболочечной модели как результат преимущественного образования ядер с заполненными оболочками, содержащими 50 и 82 нейтронов.

Однако при увеличении энергии бомбардирующих нейтронов вероятность деления на две равные части увеличивается и в конце концов становится максимальной, что находится в согласии с представлением о применимости ядерных моделей. Характер деления сильновозбужденных ядер должен в меньшей степени определяться возможностью образования заполненных оболочек в ядрах-продуктах, так как упорядочение нуклонов в оболочках присуще ядрам в основных или слабовозбужденных состояниях.

Рис. 4.2. Зависимость от массового числа выхода продуктов деления 235 U тепловыми нейтронами.

Состав продуктов деления по химическим элементам изменяется в результате последовательных бета-распадов, например:

(стабильный) (4.2)

Если процесс деления продолжается долго с постоянной скоростью, то в большинстве цепочек достигается равновесие и химический состав продуктов деления в дальнейшем не изменяется. В состоянии равновесия 25% всех продуктов деления – редкоземельные элементы, из других элементов наиболее важны: цирконий – 15%, молибден – 12%, цезий – 6,5%, газы (криптон и ксенон) – 16%. Объем газов – более 25 л при нормальных условиях на килограмм разделившегося урана.

Нейтроны деления. Среднее число вторичных нейтронов ν, приходящееся на один акт деления, играет определяющую роль в развитии цепной реакции. В таблице 4.3. приведены значения ν для основных делящихся нуклидов при делении тепловыми нейтронами и для 238 U при делении быстрыми нейтронами. С увеличением энергии нейтрона, вызывающего деление, несколько возрастает энергия возбуждения ядер-осколков. Это приводит к небольшому росту среднего числа испускаемых нейтронов.

Таблица 4.3. Число вторичных нейтронов на 1 деление

Испускание нейтрона возбужденным ядром-осколком происходит, когда в результате обмена энергией с другими нуклонами нейтрон случайно приобретает энергию, превышающую его энергию связи. Избыток полученной энергии над энергией связи есть кинетическая энергия нейтрона. Распределение кинетических энергий испущенных таким способом нейтронов является распределением Максвелла с параметром, определяемым, определяемым энергией возбуждения ядра, остающейся после испускания нейтрона – температурой ядра:

где Т – параметр распределения, выраженный, как и энергия нейтронов Е , в мегаэлектронвольтах; - константа, нормирующая распределение на число нейтронов деления ν. Нормированное на единицу распределение (после деления на ν) представляет долю нейтронов, приходящихся на единичный энергетический интервал , а n o – полное число рассматриваемых нейтронов. В таблице 4.4. приведены параметры распределений, полученных из опытов, а на рисунке 4.3 – график распределения для 235 U.

Таблица 4.4. Параметы спектров нейтронов при делении ядер тепловыми нейтронами

При делении 235 U тепловыми нейтронами средняя энергия их близка к 2 МэВ, а энергия максимума распределения около 0,7 МэВ. У нейтронов деления были зарегистрированы энергии до 18 МэВ, однако начиная с 10 МэВ нейтронов так мало, что практического значения они не имеют.

Рис. 4.3. спектр мгновенных нейтронов при делении 235 U тепловыми нейтронами.

В нижней части спектра менее 0,5% всех мгновенных нейтронов имеют энергии менее 0,05 МэВ. Энергетические спектры других делящихся нуклидов близки к спектру нейтронов 235 U .

Запаздывающие нейтроны. Данные таблицы 4.3 относятся к полному числу вторичных нейтронов как мгновенных, так и запаздывающих, хотя вклад последних в величину ν пренебрежимо мал. Однако они играют определяющую роль в управлении цепной самоподдерживающейся реакции в ядерных реакторах. Для управления реактором интерес представляют периоды полураспада нуклидов-предшественников запаздывающих нейтронов, выходы запаздывающих нейтронов, испускаемых каждым предшественником, а также энергии запаздывающих нейтронов. Некоторые радиоактивные предшественники имеют близкие периоды полураспада, по этому запаздывающие нейтроны разбивают на группы с усредненными периодами полураспада предшественников и суммарными выходами для них. Характеристики этих групп при делении тяжелых нуклидов приведены в таблице 4.5.

Таблица 4.5. Характеристики запаздывающих нейтронов

№ группы Т 1/2 , с β fi 233 U β fi 235 U β fi 239 Pu β fi 232 Th β fi 238 U E n , МэВ (23 5 U)
54-56 0,0006 0,0005 0,0002 0,00017 0,0005 0,25
21-23 0,0020 0,0035 0,0018 0,0074 0,0056 0,56
5-6 0,0017 0,0031 0,0013 0,0077 0,0067 0,43
1,9-2,3 0,0018 0,0062 0,0020 0,0221 0,0160 0,62
0,5-0,6 0,0003 0,0018 0,0005 0,0085 0,0093 0,42
0,17-0,27 0,0002 0,0007 0,0003 0,0021 0,0031 ---
β f 0,0066 0,0158 0,0061 0,0495 0,0412
β 0,00264 0,0065 0,0021 0,022 0,0157
τ з, с 18,4 13,0 15,4 10,1 7,68

В последней строке таблицы приведены средние времена запаздывания τ з или усредненные времена жизни всех запаздывающих нейтронов:

Кинетические энергии запаздывающих нейтронов заметно меньше энергий мгновенных нейтронов.

Если гипотетически соединить молибден с лантаном (см. табл. 1.2), то получится элементе массовым числом 235. Это уран-235. В такой реакции результирующий дефект массы не возрастает, а уменьшается, следовательно, для осуществления такой реакции следует затратить энергию. Из этого можно сделать вывод, что если осуществить реакцию деления ядра урана на молибден и лантан, то дефект массы при такой реакции увеличивается, а значит, реакция пойдет с выделением энергии.

После открытия английским ученым Джеймсом Чедвиком нейтрона в феврале 1932 года стало ясно, что новая частица может служить идеальным инструментом для осуществления ядерных реакций, поскольку в этом случае не будет электростатического отталкивания, препятствующего приближению частицы к ядру. Следовательно, даже нейтроны с очень низкой энергией смогут легко взаимодействовать с любым ядром.

В научных лабораториях было поставлено множество экспериментов по облучению нейтронами ядер разных элементов, в том числе урана. Считалось, что добавление нейтронов к ядру урана позволит получить так называемые трансурановые элементы, отсутствующие в природе . Однако в результате радиохимического анализа облученного нейтронами урана элементы с номеров выше 92 не обнаруживались, зато было отмечено появление радиоактивного бария (заряд ядра 56). Немецкие химики Отто Ган (1879-1968) и Фридрих Вильгельм Штрассман (1902-1980) несколько раз перепроверили результаты и чистоту исходного урана, поскольку появление бария могло свидетельствовать только о распаде урана на две части. Многие полагали, что такое невозможно.

Сообщая о своей работе в первых числах января 1939 г., О. Ган и Ф. Штрассман писали: «Мы пришли к следующему выводу: наши изотопы радия обладают свойствами бария... И следует заключить, что мы имеем здесь дело не с радием, а с барием». Однако вследствие неожиданности такого результата они не решились сделать окончательные выводы. «Как химики, - писали они, - мы должны заменить символы Ra, Ас и Th в нашей схеме... на Ва, La и Се, хотя как химики, работающие в области ядерной физики и тесно с ней связанные, мы не можем решиться на этот шаг, противоречащий предыдущим экспериментам» .

Австрийский радиохимик Лиза Мейтнер (1878-1968) и ее племянник Отто Роберт Фриш (1904-1979) обосновали возможность расщепления ядер урана с физической точки зрения сразу же после проведения Ганом и Штрассманом решающего опыта в декабре 1938 года. Мейтнер указала, что при расщеплении ядра урана образуются два более легких ядра, испускаются два-три нейтрона и выделяется огромная энергия.

Нейтронные реакции имеют особое значение для ядерных реакторов. В отличие от заряженных частиц нейтрону не требуется значительной энергии, чтобы проникнуть внутрь ядра. Рассмотрим некоторые типы взаимодействия нейтронов с веществом (нейтронные реакции), которые имеют важное практическое значение:

  • упругое рассеяние zX(n,n)?X. При упругом рассеянии происходит перераспределение кинетической энергии: нейтрон отдает часть своей кинетической энергии ядру, кинетическая энергия ядра увеличивается после рассеяния именно на величину этой отдачи, а потенциальная энергия ядра (энергия связи нуклонов) остается прежней. Энергетическое состояние и структура ядра до и после рассеяния остаются неизменными. Упругое рассеяние в большей степени свойственно легким ядрам (с атомной массой менее 20 а. е. м.) при взаимодействии их с нейтронами сравнительно небольших кинетических (менее 0,1 МэВ) энергий (замедление нейтронов деления в замедлителе в активной зоне и в биологической защите, отражение в отражателе);
  • неупругое рассеяние уХ[п,п" иу)?Х. При неупругом рассеянии сумма кинетических энергий ядра и нейтрона после рассеяния оказывается меньше, чем до рассеяния. Разница сумм кинетических энергий затрачивается на изменение внутренней структуры исходного ядра, что равноценно переходу ядра в новое квантовое состояние, в котором всегда имеет место избыток энергии сверх уровня устойчивости, который «сбрасывается» ядром в виде испускаемого гамма-кванта. В результате неупругого рассеяния кинетическая энергия системы ядро-нейтрон становится меньше на энергию у-квантов. Неупругое рассеяние - пороговая реакция, происходит только в быстрой области и преимущественно на тяжелых ядрах (замедление нейтронов деления в активной зоне, конструкционных материалах, биологической защите);
  • радиационный захват -)Х (л,у) Л " 7 У. В этой реакции получается новый изотоп элемента, а энергия возбужденного составного ядра высвобождается в виде у-квантов. Легкие ядра обычно переходят в основное состояние, излучая один у-квант. Для тяжелых ядер характерен каскадный переход через многие промежуточные возбужденные уровни с излучением нескольких у-квантов различных энергий;
  • испускание заряженных частиц у X (л, р) 7 У ; 7 Х (л,а) ? У. В результате первой реакции образуется изобара исходного ядра, поскольку протон уносит один элементарный заряд, а масса ядра практически не меняется (нейтрон привнесен, а протон - унесен). Во втором случае реакция завершается испусканием возбужденным составным ядром а-частицы (лишенного электронной оболочки ядра атома гелия 4 Не);
  • деление?Х (я, несколько/? и у) - осколки деления. Основная реакция, в результате которой освобождается энергия, получаемая в ядерных реакторах, и поддерживается цепная реакция. Реакция деления происходит при бомбардировке ядер некоторых тяжелых элементов нейтронами, которые, не обладая даже большой кинетической энергией, вызывают деление этих ядер на два осколка с одновременным освобождением нескольких (обычно 2-3) нейтронов. К делению склонны лишь некоторые четно-нечетные ядра тяжелых элементов (например, 233 U, 235 U, 239 Pu, 24l Pu, 25l C0. При бомбардировке ядер урана или других тяжелых элементов нейтронами больших энергий (Е п > ЮМэВ), например нейтронами космического излучения, они могут разделить ядра на несколько осколков, и при этом вылетают (освобождаются) десятки нейтронов;
  • реакция удвоения нейтронов?Х (n,2n)zX. Реакция с испусканием возбужденным составным ядром двух нейтронов, в результате которой образуется изотоп исходного элемента, с массой ядра на единицу меньшей массы исходного ядра. Для того чтобы составное ядро смогло выбросить два нейтрона, его энергия возбуждения должна быть не меньше энергии связи двух нейтронов в ядре. Энергия порога (/?, 2п) - реакции особенно низка в реакции ""Be (л, 2/?) s Be: она равна 1,63 МэВ. Для большинства изотопов энергия порога лежит в интервале от 6 до 8 МэВ.

Процесс деления удобно рассматривать по капельной модели ядра. При поглощении нейтрона ядром внутренний баланс сил в ядре нарушается, так как нейтрон вносит помимо своей кинетической энергии еще и энергию связи Е св, которая является разностью энергий свободного нейтрона и нейтрона в ядре. Сферическая форма возбужденного составного ядра начинает деформироваться и может принять форму эллипсоида (см. рис. 1.4), при этом поверхностные силы стремятся вернуть ядро к исходной форме. Если это произойдет, то ядро испустит у-квант и перейдет в основное состояние, т. е. будет иметь место реакция радиационного захвата нейтрона.

Рис. 1.4.

Если же энергия связи (возбуждения) окажется больше энергии порога деления Е сп > Е лел, то ядро может принять форму гантели и под действием кулоновских сил отталкивания разорваться по перемычке на два новых ядра - осколки деления, представляющие собой ядра различных нуклидов, находящихся в средней части Периодической системы элементов. Если энергия связи меньше порога деления, то нейтрон должен иметь кинетическую энергию > Е яел -Е св, чтобы произошло деление ядра (табл. 1.3). В противном случае он будет просто захватываться ядром, не вызывая его деления.

Таблица 1.3

Ядерно-физические характеристики некоторых нуклидов

Энергия возбуждения каждого из новых ядер существенно больше энергии связи нейтрона в этих ядрах, поэтому при переходе в основное энергетическое состояние они испускают один или несколько нейтронов, а затем у-кванты. Нейтроны и у-кванты, испускаемые возбужденными ядрами, называют мгновенными.

Ядра делящихся изотопов, находящихся в конце Периодической системы, имеют нейтронов значительно больше, чем протонов, по сравнению с ядрами нуклидов, находящихся в середине системы (для 23;> и отношение числа нейтронов к числу протонов N/Z= 1,56, а для ядер нуклидов, где Л = 70-Н60, это отношение равно 1,3-1,45). Поэтому ядра продуктов деления перенасыщены нейтронами и являются (3‘-радиоактивными.

После (3" распада ядер продуктов деления возможно образование дочерних ядер с энергией возбуждения, превышающей энергию связи нейтронов в них. В результате возбужденные дочерние ядра испускают нейтроны, которые называют запаздывающими (см. рис. 1.5). Время их выхода после акта деления определяется периодами распада этих ядер и составляет от нескольких долей секунды до 1 мин. В настоящее время известно большое количество продуктов деления, испускающих при распаде запаздывающие нейтроны, из которых основными являются изотопы йода и брома. Для практических целей наибольшее распространение нашло использование шести групп запаздывающих нейтронов. Каждая из шести групп запаздывающих нейтронов характеризуется периодом полураспада Т„ или постоянной распада X, и долей запаздывающих нейтронов в данной группе р„ или относительным выходом запаздывающих нейтронов а,. Причем la, = 1, a ip, =р - физической доле запаздывающих нейтронов. Если представить все запаздывающие нейтроны одной эквивалентной группой, то свойства этой группы будут определяться средним временем жизни ее т 3 и долей всех запаздывающих нейтронов р. Для 235 U значение т 3 = 12,4 с и р = 0,0064.

Вклад запаздывающих нейтронов в среднее число нейтронов, выделяющихся в одном акте деления, мал. Однако запаздывающие нейтроны играют решающую роль в обеспечении безопасной работы и в управлении ядерных реакторов.

Появление при делении одного ядра двух-трех нейтронов создает условия для деления других ядер (см. рис. 1.6). Реакции с размножением нейтронов протекают аналогично цепным химическим реакциям, поэтому они также названы цепными.

Рис. 1.5.

Рис. 1.6.

Необходимое условие поддержания цепной реакции заключается в том, чтобы при делении каждого ядра производился в среднем по крайней мере один нейтрон, вызывающий деление другого ядра. Это условие удобно выразить, вводя коэффициент размножения к , определяемый как отношение числа нейтронов какого-либо одного поколения к числу нейтронов в предшествующем поколении. Если коэффициент размножения к равен единице или немного больше, то цепная реакция возможна; если же? к = 1 к началу второго поколения будет 200 нейтронов, третьего - 200 и т. д. Если к > 1, например к = 1,03, то, начав с 200 нейтронов, к началу второго поколения будет 200-1,03 = 206 нейтронов, третьего - 206-1,03 нейтронов, к началу п- го поколения - 200- (1,03)п - 1, т. е., например, в сотом поколении будет 3731 нейтрон. В ядерном реакторе среднее время существования нейтронов от момента рождения до их поглощения очень мало и составляет 10 -4 - 10 _3 с, т. е. за 1 с произойдут последовательно деления в 1 000-10000 поколениях нейтронов. Таким образом, нескольких нейтронов может быть достаточно для начала быстро растущей цепной реакции. Чтобы такая система не вышла из-под контроля, необходимо ввести в нее поглотитель нейтронов. Если же к 1 и равен, например, 0,9, то число нейтронов к следующему поколению уменьшится от 200 до 180, к третьему до 180-0,9, и т.д. К началу 50-го поколения останется один нейтрон, способный вызвать деление. Следовательно, цепная реакция при таких условиях протекать не может.

Однако в реальных условиях не все нейтроны вызывают деление. Часть нейтронов теряется при захвате неделящимися ядрами (урана-238, замедлителя, конструкционных материалов и т. п.), другая часть вылетает из объема делящегося материала наружу (утечка нейтронов). Эти потери нейтронов влияют на ход цепной реакции деления ядер.

Энергия нейтронов в момент их рождения очень высока - они движутся со скоростью несколько тысяч километров в секунду, поэтому их называют быстрыми нейтронами. Энергетический спектр нейтронов деления довольно широк - примерно от 0,01 до 10 МэВ. При этом средняя энергия вторичных нейтронов около 2 МэВ. В результате столкновений нейтронов с ядрами окружающих атомов их скорость быстро уменьшается. Этот процесс называется замедлением нейтронов. Особенно эффективно замедляются нейтроны при соударении с ядрами легких элементов (упругое столкновение). При взаимодействии с ядрами тяжелых элементов происходит неупругое столкновение, и нейтрон замедляется менее эффективно. Здесь для иллюстрации можно провести аналогию с теннисным шариком: при ударе о стенку он отскакивает почти с такой же скоростью, а при ударе о такой же шарик он сильно замедляет свою скорость. Вследствие этого в качестве замедлителей в ядерных реакторах 1 (в дальнейшем - реактор) используют воду, тяжелую воду или графит.

В результате столкновений с ядрами замедлителя нейтрон может замедлиться до скорости теплового движения атомов, т. е. до нескольких километров в секунду. Такие замедленные нейтроны в ядерной физике принято называть тепловыми или медленными. Чем медленнее нейтрон, тем больше вероятность того, что он не пролетит мимо ядра атома. Причина такой зависимости сечения ядра от скорости налетающих нейтронов лежит в двойственной природе самого нейтрона. В ряде явлений и процессов нейтрон ведет себя как частица, однако в некоторых случаях он представляет собой сгусток волн. При этом оказывается, что чем меньше его скорость, тем больше длина его волны и его размер. Если нейтрон очень медленный, то его размер может оказаться в несколько тысяч раз больше размера ядра, поэтому так сильно возрастает площадь, попав в которую нейтрон взаимодействует с ядром. Физики называют эту плошадь сечением ядра (а не налетающего нейтрона).

Тяжелая вода (D20) - разновидность воды, в которой обыкновенный водородзаменен его тяжелым изотопом - дейтерием, содержание которой в обычной водесоставляет 0,015%. Плотность тяжелой воды равна 1,108 (по сравнению с 1,000 дляобычной воды); тяжелая вода замерзает при 3,82 "С и кипит при 101,42 "С, тогда каксоответствующие температуры для обычной воды 0 и 100 °С. Таким образом, различие физических свойств легкой и тяжелой воды довольно значительно.

Деле́ние ядра́ - процесс расщепления атомного ядра на два (реже три) ядра с близкими массами, называемых осколками деления. В результате деления могут возникать и другие продукты реакции: лёгкие ядра (в основном альфа-частицы), нейтроны и гамма-кванты. Деление бывает спонтанным (самопроизвольным) и вынужденным (в результате взаимодействия с другими частицами, прежде всего, с нейтронами). Деление тяжёлых ядер - экзотермический процесс, в результате которого высвобождается большое количество энергии в виде кинетической энергии продуктов реакции, а также излучения. Деление ядер служит источником энергии в ядерных реакторах и ядерном оружии. Процесс деления может протекать только в том случае, когда потенциальная энергия начального состояния делящегося ядра превышает сумму масс осколков деления. Поскольку удельная энергия связи тяжёлых ядер уменьшается с увеличением их массы, это условие выполняется почти для всех ядер с массовым числом .

Однако, как показывает опыт, даже самые тяжёлые ядра делятся самопроизвольно с очень малой вероятностью. Это означает, что существует энергетический барьер (барьер деления ), препятствующий делению. Для описания процесса деления ядер, включая вычисление барьера деления, используется несколько моделей, но ни одна из них не позволяет объяснить процесс полностью.

То, что при делении тяжёлых ядер выделяется энергия, непосредственно следует из зависимости удельной энергии связи ε = E св (A,Z)/A от массового числа А.При делении тяжёлого ядра образуются более лёгкие ядра, в которых нуклоны связаны сильнее, и часть энергии при делении высвобождается. Как правило, деление ядер сопровождается вылетом 1 – 4 нейтронов. Выразим энергию деления Q дел через энергии связи начального и конечных ядер. Энергию начального ядра, состоящего из Z протонов и N нейтронов, и имеющего массу M(A,Z) и энергию связи E св (A,Z), запишем в следующем виде:

M(A,Z)c 2 = (Zm p + Nm n)c 2 - E св (A,Z).

Деление ядра (A,Z) на 2 осколка (A 1 ,Z 1) и (А 2 ,Z 2) сопровождается образованием N n = A – A 1 – A 2 мгновенных нейтронов. Если ядро (A,Z) разделилось на осколки с массами M 1 (A 1 ,Z 1), M 2 (A 2 ,Z 2) и энергиями связи E св1 (A 1 ,Z 1), E св2 (A 2 ,Z 2), то для энергии деления имеем выражение:

Q дел = {M(A,Z) – }c 2 = E св 1 (A 1 ,Z 1) + E св (A 2 ,Z 2) – E св (A,Z),

A = A 1 + A 2 + N n , Z = Z 1 + Z 2 .

23. Элементарная теория деления.

В 1939 г. Н. Бор и Дж.Уилер , а также Я. Френкель еще задолго до того, как деление было всесторонне изучено экспериментально, предложили теорию этого процесса, основанную на представлении о ядре как о капле заряженной жидкости.

Энергия, освобождающаяся при делении, может быть получена непосредственно из формулы Вайцзеккера.

Рассчитаем величину энергии, выделяющнйся при делении тяжелого ядра. Подставим в (f.2) выражения для энергий связи ядер (f.1), полагая А 1 =240 и Z 1 = 90. Пренебрегая последним членом в (f.1) вследствие его малости и подставив значения параметров a 2 и a 3 ,получаем

Отсюда получим, что деление энергетически выгодно, когда Z 2 /A > 17. Величина Z 2 /A называется параметром делимости. Энергия Е, освобождающаяся при делении, растет с увеличением Z 2 /A ; Z 2 /A = 17 для ядер в районе иттрия и циркония. Из полученных оценок видно, что деление энергетически выгодно для всех ядер с A > 90. Почему же большинство ядер устойчиво по отношению к самопроизвольному делению? Чтобы ответить на этот вопрос, посмотрим, как меняется форма ядра в процессе деления.

В процессе деления ядро последовательно проходит черезследующие стадии (рис.2): шар, эллипсоид, гантель, два грушевидных осколка, два сферических осколка. Как меняется потенциальная энергия ядра на различных стадиях деления? После того как деление произошло, и осколки находятся друг от друга на расстоянии, много большем их радиуса, потенциальную энергию осколков, определяемую кулоновским взаимодействием между ними, можно считать равной нулю.

Рассмотрим начальную стадию деления, когда ядро с увеличением r принимает форму все более вытянутого эллипсоида вращения. На этой стадии деления r - мера отклонения ядра от сферической формы (рис.3). Вследствие эволюции формы ядра изменение его потенциальной энергии определяется изменением суммы поверхностной и кулоновской энергий Е" п + Е" к. Предполагается, что объем ядра в процессе деформации остается неизменным. Поверхностная энергия Е" п при этом возрастает, так как увеличивается площадь поверхности ядра. Кулоновская энергия Е" к уменьшается, так как увеличивается среднее расстояние между нуклонами. Пусть сферическое ядро в результате незначительной деформации, характеризующейся малым параметром, приняло форму аксиально-симметричного эллипсоида. Можно показать, что поверхностная энергия Е" п и кулоновская энергия Е" к в зависимости от меняются следующим образом:

В случае малых эллипсоидальных деформаций рост поверхностной энергии происходит быстрее, чем уменьшение кулоновской энергии. В области тяжелых ядер 2Е п > Е к сумма поверхностной и кулоновской энергий увеличивается с увеличением . Из (f.4) и (f.5) следует, что при малых эллипсоидальных деформациях рост поверхностной энергии препятствует дальнейшему изменению формы ядра, а, следовательно, и делению. Выражение (f.5) справедливо для малых значений(малых деформаций). Если деформация настолько велика, что ядро принимает форму гантели, то силы поверхностного натяжения, как и кулоновские силы, стремятся разделить ядро и придать осколкам шарообразную форму. На этой стадии деления увеличение деформации сопровождается уменьшением как кулоновской, так и поверхностной энергии. Т.е. при постепенном увеличении деформации ядра его потенциальная энергия проходит через максимум. Теперь r имеет смысл расстояния между центрами будущих осколков. При удалении осколков друг от друга, потенциальная энергия их взаимодействия будет уменьшатся, так как уменьшается энергия кулоновского отталкивания Е к. Зависимость потенциальной энергии от расстояния между осколками показана на рис. 4. Нулевой уровень потенциальной энергии соответствует сумме поверхностной и кулоновской энергий двух невзаимодействующих осколков. Наличие потенциального барьера препятствует мгновенному самопроизвольному делению ядер. Для того чтобы ядро мгновенно разделилось, ему необходимо сообщить энергию Q, превышающую высоту барьера Н. Максимум потенциальной энергии делящегося ядра примерно равен е 2 Z 2 /(R 1 +R 2), где R 1 и R 2 - радиусы осколков. Например, при делении ядра золота на два одинаковых осколка е 2 Z 2 /(R 1 +R 2) = 173 МэВ, а величина энергии Е, освобождающейся при делении (см. формулу (f.2) ), равна 132 МэВ. Таким образом, при делении ядра золота необходимо преодолеть потенциальный барьер высотой около 40 Мэв. Высота барьера Н тем больше, чем меньше отношение кулоновской и поверхностной энергии Е к /Е п в начальном ядре. Это отношение, в свою очередь, увеличивается с увеличением параметра делимости Z 2 /А (см. (f.4) ). Чем тяжелее ядро, тем меньше высота барьера Н, так как параметр делимости увеличивается с ростом массового числа:

Т.е. согласно капельной модели в природе должны отсутствовать ядра с Z 2 /А > 49, так как они практически мгновенно (за характерное ядерное время порядка 10 -22 с) самопроизвольно делятся. Существование атомных ядер с с Z 2 /А > 49 ("остров стабильности") объясняется оболочечной структурой. Зависимость формы, высоты потенциального барьера H и энергии деления E от величины параметра делимости Z 2 /А показана на рис. 5.

Самопроизвольное деление ядер с Z 2 /А < 49, для которых высота барьера Н не равна нулю, с точки зрения классической физики невозможно. С точки зрения квантовой механики такое деление возможно в результате прохождения через потенциальный барьер и носит название спонтанного деления. Вероятность спонтанного деления растет с увеличением параметра делимости Z 2 /А, т.е. с уменьшением высоты барьера. В целом период полураспада относительно спонтанного деления уменьшается при переходе от менее тяжелых ядер к более тяжелым от Т 1/2 > 10 21 лет для 232 Th до 0.3 с для 260 Кu. Вынужденное деление ядер с Z 2 /А < 49 может быть вызвано любыми частицами: фотонами, нейтронами, протонами, дейтронами, -частицами и т.д., если энергия, которую они вносят в ядро достаточна для преодоления барьера деления.

Делением ядер называется процесс, при котором из одного атомного ядра образуется 2 (иногда 3) ядра-осколка, которые являются близкими по массе.

Этот процесс является выгодным для всех β -стабильных ядер с массовым числом А > 100.

Деление ядер урана было выявлено в 1939 году Ганом и Штрасманом, однозначно доказавшие, что при бомбардировке нейтронами ядер урана U образуются радиоактивные ядра с массами и зарядами, приблизительно в 2 раза меньшими массы и заряда ядра урана. В том же году Л. Мейтнером и О. Фришером был введен термин «деление ядер » и было отмечено, что при этом процессе выделяется огром-ная энергия, а Ф. Жолио-Кюри и Э. Ферми одновременно выяснили, что при делении испускаются несколько нейтронов (нейтроны деления) . Это стало основой для выдвижения идеи самоподдерживающейся цепной реакции деления и использования деления ядер как источника энергии. Основой современной ядерной энергетики является деление ядер 235 U и 239 Pu под действием нейтронов.

Деление ядра может происходить благодаря тому, что масса покоя тяжелого ядра оказывается большей суммы масс покоя осколков, которые возникают в процессе деления.

Из графика видно, что этот процесс оказывается выгодным с энергетической точки зрения.

Механизм деления ядра можно объяснить на основе капельной модели, со-гласно которой сгусток нуклонов напоминает капельку заряженной жид-кости. Ядро удерживают от распада ядерные силы притяже-ния, большие, чем силы кулоновского отталкивания, которые действуют между протонами и стремящиеся разорвать ядро.

Ядро 235 U имеет форму шара. После поглощения нейтрона оно воз-буждается и деформируется, приобретая вытянутую форму (на рисунке б ), и растягивается до тех пор, пока силы отталкивания между половинка-ми вытянутого ядра не станут больше сил притяжения, действующих в перешейке (на рисунке в ). После этого ядро разрывается на две части (на рисунке г ). Осколки под действием кулоновских сил отталкивания раз-летаются со скоростью, равной 1/30 скорости света.

Испускание нейтронов в процессе деления , о котором мы говорили выше, объясняется тем, что относительное число нейтронов (по отношению к числу протонов) в ядре увеличивается с возрастанием атом-ного номера, и для образовавшихся при делении осколков число нейтронов становится большим, чем это возможно для ядер атомов с меньшими номерами.

Деление зачастую происходит на осколки неравной массы. Эти осколки являются радиоактивными. После серии β -распадов в итоге образуются стабильные ионы.

Кроме вынужденного , бывает и спонтанное деление ядер урана , которое было от-крыто в 1940 году советскими физиками Г. Н. Флеровым и К. А. Петржаком. Период полураспада для спонтанного деления соответствует 10 16 годам, что в 2 млн. раз больше периода полураспада при α -распаде урана.

Синтез ядер происходит в термоядерных реакциях. Термоядерные реакции — это реак-ции слияния легких ядер при очень высокой температуре. Энергия, которая выделяется при слиянии (синтезе), будет максимальной при синтезе легких элементов, которые обладают наименьшей энергией связи. При соединении двух легких ядер, например, дейтерия и трития, образуется более тяжелое ядро гелия с большей энергией связи:

При таком процессе ядерного синтеза происходит выделение значительной энергии (17,6 Мэв), равная разности энергий связи тяжелого ядра и двух легких ядер . Образующийся при реакциях нейтрон приобретает 70% этой энергии. Сравнение энергии, которая приходится на один нуклон в реакциях ядерного деления (0,9 Мэв) и синтеза (17,6 Мэв), показывает, что реакция синтеза легких ядер энергетически является более выгодной, чем реакция деления тяжелых.

Слияние ядер происходит под действием сил ядерного притяжения, поэтому они должны сблизиться до расстояний, меньших 10 -14 , на которых действуют ядерные силы. Этому сближению препятствует кулоновское отталкивание положительно заряженных ядер. Его можно пре-одолеть лишь за счет большой кинетической энергии ядер, которые превышают энергию их кулоновского отталкивания. Из соответствующих расчетов видно, что кинетическую энергию ядер, которая нужна для реакции синтеза, можно достигнуть при температурах порядка сотен миллионов градусов , поэтому эти реакции имеют название термоядерных .

Термоядерный синтез — реакция, в которой при высокой температуре, большей 10 7 К, из легких ядер синтезируются более тяжелые ядра.

Термоядерный синтез — источник энергии всех звезд, в том числе, и Солнца.

Основным процессом, при котором происходит освобождение термоядерной энергии в звездах, является превращение водорода в гелий. За счет дефекта массы в этой реакции масса Солнца уменьшается каждую секунду на 4 млн тонн .

Большую кинетическую энергию , которая нужна для термоядерного синтеза, ядра водорода получают в результате сильного гравитационного притяжения к центру звезды. После этого при слиянии ядер гелия образуются и более тяжелые элементы.

Термоядерные реакции играют одну из главных ролей в эволюции химического состава вещества во Вселенной. Все эти реакции происходят с выделением энергии, которая излучается звездами в виде света на протяжении миллиардов лет.

Осуществление управляемого термоядерного синтеза предоставило бы человечеству новый, практически неисчерпаемый источник энергии. И дейтерий, и тритий, нужные для его осуществления , вполне доступны. Первый содержится в воде морей и океанов (в количестве, достаточном для использования в течение миллиона лет), второй может быть получен в ядерном реакторе при облучении жидкого лития (запасы которого огромны) нейтронами:

Одним из важнейших преимуществ управляемого термоядерного синтеза является отсутствие радиоактивных отходов при его осуществлении (в отличие от реакций деления тяжелых ядер урана).

Главным препятствием на пути осуществления управляемого термоядерного синтеза является невозможность удержания высокотемпературной плазмы с помощью сильных магнитных полей в течение 0,1-1 . Однако существует уверенность в том, что рано или поздно термоядерные ре-акторы будут созданы.

Пока же получилось произвести только неуправляемую реакцию синтеза взрывного типа в водородной бомбе.