Роль печени в пигментном обмене. Особенности пигментного обмена при желтухах


  • Энергетический обмен. Характеристика основных показателей энергетического обмена, их физиологическое значение. Основной обмен.
  • Билирубин образуется при распаде старых эритроцитов в
    ретикулоэндотелиальной системе. Освобождающийся при этом из
    гемоглобина гем разлагается. Железо реутилизируется, а из
    тетрапиррольного кольца путем комплекса сложных окислительно-
    восстановительных реакций образуется билирубин. Другими его
    источниками являются миоглобин, цитохромы. Этот процесс происходит в
    клетках РЭС, в основном в печени, селезенке, костном мозге, которые
    выделяют в кровь свободный или непрямой билирубин, нерастворимый в
    воде. За сутки распадается около 1% эритроцитов и образуется 100-250
    мг билирубина, 5-20% его образуется из незрелых, преждевременно
    разрушенных эритроцитов
    .Это так называемый ранний (шунтовой)
    билирубин
    .

    Значительно, от 30 до 80% увеличивается доля раннего билирубина
    при заболеваниях и поражениях с неэффективным эритропоэзом. Это
    свинцовое отравление, железодефицитная анемия, пернициозная анемия,
    талассемия, эритропоэтическая порфирия, сидеробластическая анемия.

    При этих заболеваниях имеет место увеличенная экскреция уробилина
    с калом, вследствие увеличенного общего оборота желчных пигментов, без
    укорочения жизни эритроцитов периферической крови. Кроме того ранний
    билирубин образуется из неэритроцитарного гема, источником которого
    служат, печеночные протеиды (миоглобин, каталаза, триптофанпирролаза


    печени). Транспортируется прямой билирубин в связанной с альбумином
    форме.

    Обмен билирубина, В обмене билирубина печень выполняет 3
    функции: захват (клиренс) гепатоцитом из крови синусоида билирубина;
    связывание билирубина с глюкуроновой кислотой (конъюгация); выделение
    связанного (прямого) билирубина из печеночной клетки в желчные
    капилляры (экскреция).

    Рис. 7. Схема транспорта билирубина
    в печеночной клетке.

    А - разрушенные эритроциты; Б -
    ранний билирубин; В - свободный (непрямой)
    билирубин. 1 - синусоид; 2 - гладкая
    эндоплазматическая сеть; 3 - ядро; 4 -
    пластинчатый комплекс; 5 - желчный каналец;
    6 ~ кишка; 7 - цитоплазматические протеины.

    Непрямой (свободный) билирубин
    (рис.7) отделяется от альбумина в
    Цитоплазменной мембране, внутриклеточные
    протеины (V и Z) захватывают билирубин.

    Печеночная мембрана активно участвует в
    захвате билирубина из плазмы. Затем непрямой билирубин в клетке
    переносится в мембраны гладкой эндоплазматической сети, где билирубин
    связывается с глюкуроновой кислотой. Катализатором этой реакции является
    специфический для билирубина фермент уридилдифосфат (УДФ) -
    глюкуронилтрансферраза. Соединение билирубина с глюкуроновой кислотой
    делает его рстворимым в воде, что обеспечивает переход его в желчь,
    фильтрацию в почках и быструю (прямую) реакцию с диазореактивом,
    почему и называется прямым (связанным) билирубином.

    Транспорт билирубина. Выделение билирубина в желчь - это
    конечный этап обмена билирубина в гепатоцитах. Печень ежедневно
    выделяет до 300 мг билирубина и способна вылелить пигмента в 10 раз


    больше, чем его образуется, т.е. в норме имеется значительный
    функциональный резерв для экскреции билирубина. При
    ненарушенном
    связывании переход билирубина из печени в желчь зависит от скорости
    секреции желчи. Он переходит в желчь на билиарном полюсе гепатоцита с
    помощью цитоплазматических мембран, лизосом и пластинчатого
    комплекса. Связанный билирубин в желчи образует макромолекулярный
    сложнй коллоидный раствор (мицеллу) с холестерином, фосфолипидами
    и солями желчных кислот.С желчью билирубин попадает в тонкий
    кишечник. Кишечные бактерии восстанавливают его с образованием
    бесцветного уробилиногена.
    Из тонкого кишечника часть уробилиногена
    всасывается и попадает в воротную вену и вновь поступает в печень
    (кишечно-печеночная циркуляция уробилиногена) .В печени пигмент
    полностью расщепляется.

    Печень поглощает его не полностью, и небольшое количество
    уробилиногена попадает в системную циркуляцию и выводится с мочой.
    Большая часть образующегося в кишечнике уробилиногена окисляется в
    прямой кишке до коричневого пигмента уробилина, который экскретируется
    с фекалиями.

    Пигментный обмен

    Под пигментным обменом подразумевают обычно все процессы образования, превращения и распада пигмента крови (гемоглобина), точнее его пигментной небелковой части, и главного деривата этого пигмента- желчного пигмента (билирубина). В настоящее время однако известны и другие пигменты, которые по хим. составу по – видимому, близки НЬ - это-НЬ мышц, цитохромы, дыхательный фермент Варбурга (Warburg) и другие еще весьма мало изученные пигменты. Отделить процессы образования, превращения и распада этих пигментов от процессов обмена НЬ пока невозможно. В более широком смысле под П..о. можно подразумевать процессы образования, превращения и распада всех пигментов организма, т. е. как вышеперечисленных пигментов, группы НЬ, так и всех других пигментов- меланина, липохромов и т. д.

    ФИЗИОЛОГИЯ ОБМЕНА БИЛИРУБИНА

    Процесс превращения свободного (непрямого) билирубина, образующегося при разрушении эритроцитов и распаде гемоглобина в органах ретикулоэндотелиальной системы (РЭС), в билирубин-диглюкуронид (связанный, или прямой билирубин) в печеночной клетке (рис. 1) осуществляется в три этапа (на рисунке обозначены римскими цифрами):


    Рис. 1. Процессы обезвреживания свободного (непрямого) билирубина и мезобилиногена (уробилиногена) в печеночной клетке.

    Бн - свободный (непрямой) билирубин; Б-Г - билирубин-глюкуронид (связанный, или прямой билирубин); Мбг - мезобилиноген (уробилиноген).

    Римскими цифрами обозначены этапы обезвреживания

    1. I этап - захват билирубина (Б) печеночной клеткой после отщепления альбумина;

    2. II этап - образование водорастворимого комплекса билирубин-диглюкуронида (Б-Г);

    3. III этап - выделение образовавшегося связанного (прямого) билирубина (Б-Г) из печеночной клетки в желчные канальцы (проточки).

    Дальнейший метаболизм билирубина связан с поступлением его в желчные пути и кишечник. В нижних отделах желчевыводящих путей и кишечнике под воздействием микробной флоры происходит постепенное восстановление связанного билирубина до уробилиногена. Часть уробилиногена (мезобилиноген) всасывается в кишечнике и по системе воротной вены вновь попадает в печень, где в норме происходит практически полное его разрушение (см. рис. 1). Другая часть уробилиногена (стеркобилиноген) всасывается в кровь в геморроидальных венах, попадая в общий кровоток и выделяясь почками с мочой в незначительных количествах в виде уробилина, который часто не выявляется клиническими лабораторными методами. Наконец, третья часть уробилиногена превращается в стеркобилин и выделяется с калом, обусловливая его характерную темно-коричневую окраску.

    Методы определения билирубина и его метаболитов

    Определение билирубина в сыворотке крови

    В клинической практике используются различные методы определения билирубина и его фракций в сыворотке крови.

    Наиболее распространенным из них является биохимический метод Ендрассика-Грофа . Он основан на взаимодействии билирубина с диазотированной сульфаниловой кислотой с образованием азопигментов. При этом связанный билирубин (билирубин-глюкуронид) дает быструю («прямую») реакцию с диазореактивом, тогда как реакция свободного (не связанного с глюкуронидом) билирубина протекает значтельно медленнее. Для ее ускорения применяют различные вещества–акселераторы, например кофеин (метод Ендрассика-Клеггорна-Грофа), которые освобождают билирубин из белковых комплексов («непрямая» реакция). В результате взаимодействия с диазотированной сульфаниловой кислотой билирубин образует окрашенные соединения. Измерения проводят на фотометре.

    ХОД ОПРЕДЕЛЕНИЯ

    В 3 пробирки (2 опытные пробы и холостая) вводят реактивы, как указано в таблице. Диазореакция


    Для определения связанного билирубина измерение проводят спустя 5-10 мин после добавления диазосмеси, так как при длительном стоянии в реакцию вступает несвязанный билирубин. Для определения общего билирубина пробу для развития окраски оставляют стоять 20 мин, после чего измеряют на фотометре. При дальнейшем стоянии окраска не изменяется. Измерение проводят при длине волны 500-560 нм (зеленый светофильтр) в кювете с толщиной слоя в 0,5 см против воды. Из показателей, полученных при измерении общего и связанного билирубина, вычитают показатель холостой пробы. Расчет производят по калибровочному графику. Находят содержание общего и связанного билирубина.Метод Ендрассика, Клеггорна и Грофа прост, удобен в практике, не связан с применением дефицитных реактивов и является наиболее приемлемым для практических лабораторий.Определение рекомендуется приводить сразу же после забора проб, чтобы избежать окисления билирубина на свету. Гемолиз сыворотки снижает количество билирубина пропорционально присутствию гемоглобина. Следовательно, сыворотка крови не должна быть гемолизирована.

    Ряд веществ - гидрокортизон, андрогены, эритромицин, глюкокортикоиды, фенобарбитал, аскорбиновая кислота - вызывают интерференцию.

    Постоение калибровочного графика при методе ендрассика.

    Способ I - Шелонга-Вендес использованием стабилизирующего свойства белка сыворотки крови. Основной раствор билирубина: в колбе вместимостью 50 мл растворяют 40 мг билирубина в 30-35 мл 0,1 моль/л раствора карбоната натрия Na 2 CO 3 . Хорошо взбалтывают, не допуская образования пузырьков. Доводят до 50 мл 0,1 моль/л раствором Nа 2 СО 3 и несколько раз перемешивают. Раствор стоек только в течение 10 мин от начала приготовления. В дальнейшем происходит окисление билирубина. Рабочий раствор билирубина: к 13,9 мл свежей негемолизированной сыворотки здорового человека добавляют 2 мл свежеприготовленного основного раствора билирубина и 0,1 мл 4 моль/л раствора уксусной кислоты. Хорошо перемешивают. При этом выделяются пузырьки углекислого газа. Рабочий раствор стоек в течение нескольких дней. Этот раствор содержит точно на 100 мг/л, или 171 мкмоль/л, билирубина больше, чем сыворотка, взятая для приготовления раствора. Чтобы исключить при расчетах количество билирубина, содержащегося в этой сыворотке, при измерении на фотометре из величин экстинкции калибровочных проб вычитают величины экстинкции соответствующих разведений компенсационной жидкости. Для приготовления компенсационной жидкости смешивают 13,9 мл той же сыворотки, которая использовалась для приготовления калибровочного раствора билирубина, 2 мл 0,1 моль/л раствора карбоната натрия и 0,1 мл 4 моль/л раствора уксусной кислоты. Для построения калибровочного графика готовят ряд разведений с различным содержанием билирубина. К полученным разведениям прибавляют по 1,75 мл кофеинового реактива и по 0,25 мл диазосмеси. При появлении помутнения можно добавить по 3 капли 30%-ного раствора едкого натра. Измерение проводят при тех же условиях, что и в опытных пробах, через 20 мин. Из компенсационной жидкости готовят разведения, аналогичные калибровочным (как указано ниже), и далее обрабатывают их так же, как калибровочные пробы.

    Таблица. Определение связанного билирубина

    · Способ второй – выстраивать калибровочный график по готовому набору реактивов.(Например, набор Билирубин –эталон фирмы Лахема, включающий в себя билирубин лиофилизированный (точная концентрация билирубина приведена на этикетке флакона); и альбумин лиофилизированный.)

    Определение билирубина в сыворотке крови прямым фотометрическим методом

    Определение общего билирубина прямым фотометрическим методом чрезвычайно просто, удобно, не требует венепункции (исследуется капиллярная кровь), может повторяться неоднократно в течение суток. Недостатком метода является невозможность определить фракции билирубина, меньшая точность при выраженном гемолизе.

    Несмотря на то, что при этом определяется только общий билирубин, этот подход представляет значительный интерес в неонатологии, так как у новорожденных детей преобладает одна производная билирубина, практически равная концентрации общего билирубина. Билирубин представляет собой пигмент с ярко выраженной желтой окраской. Его спектральная кривая поглощения имеет максимум на длине волны 460 нм (синяя область спектра). Измеряя поглощение на этой длине волны можно было бы определить концентрацию общего билирубина в крови. Однако ряд факторов усложняют такое измерение. Билирубин является сильным поглотителем и поэтому оптимальная для построения фотометра плотность 0,3-0,5 Б оптической плотности достигается в кювете с длиной оптического пути примерно 250 микрометров (0,25 мм).

    Изготовить такую кювету непросто. Кроме того, фотометрирование непосредственно крови усложняется присутствием форменных элементов крови, рассеянием света на них, а также интерференцией билирубина с гемоглобином, который частично поглощает свет в синей области спектра. Поэтому для фотометрирования необходимо, во-первых, получить образцы плазмы крови, а, во-вторых, нужно исключить влияние гемоглобина, присутствующего в небольшом количестве в плазме. Плазму для фотометрирования получают на лабораторных центрифугах в гепаринизированных гематокритных капиллярах.

    ПИГМЕНТНЫЙ ОБМЕН (лат. pigmentum краска) - совокупность процессов образования, превращения и распада в организме пигментов (окрашенных соединений, выполняющих самые различные функции). Нарушение П. о. является причиной большого числа болезней, в т. ч. болезней накопления, или следствием некоторых заболеваний (напр., вирусного гепатита и др.).

    Наиболее важным аспектом обмена пигментов (см.) у животных и человека является обмен гемсодержащего хромопротеида гемоглобина (см.) и родственных ему пигментов - миоглобина (см.), цитохромов (см.),каталазы (см.) и пероксидаз (см.), многих дыхательных пигментов (см.). Синтез гема осуществляется из сукцинил-КоА и глицина через стадию образования 6-аминолевулиновой к-ты, при конденсации двух молекул которой возникает порфобилиноген - непосредственный предшественник протопорфирина (см. Порфирины). После завершения порфиринового цикла происходит включение в порфирии атома железа, доставляемого транспортным белком ферритином (см.), с образованием протогема, который, соединяясь со специфическим белком, превращается в гемоглобин или другой гемсодержащий пигмент. Хромопротеиды пищи (гемоглобин, миоглобин, хлорофилл-протеиды и т. д.), попадая в жел.-киш. тракт, расщепляются на белковую часть, подвергающуюся затем протеолитическому расщеплению, и простетическую группу. Гем не используется для ресинтеза хромопротеидов и окисляется в гематин, выделяющийся с калом в неизмененном виде или в виде соединений, образующихся из гематина под действием микрофлоры кишечника. В тканях распад гемоглобина и других гемсодержащих пигментов протекает иным путем. Гемоглобин, образующийся при распаде эритроцитов, доставляется белком плазмы гаптоглобином (см.) в клетки ретикулоэндотелиальной системы, где после окисления гемоглобина с образованием вердогемоглобина происходит отщепление от молекулы пигмента белковой части, которая затем разрушается под действием протеолитических ферментов, и высвобождение железа, пополняющего общий резерв железа в организме.

    Избыточное образование желтокоричневого пигмента гемосидерина - продукта обмена гемоглобина и его отложение в тканях ведет к гемосидерозу (см.) и гемохроматозу (см.). Нарушение метаболизма гемоглобина в печени приводит к пигментному гепатозу (см. Гепатозы). При интенсивном разрушении большого числа эритроцитов (напр., при отравлениях, инфекциях, ожогах) возникает гемоглобинурия (см.) - появление в моче значительного количества гемоглобина. Известны многочисленные случаи синтеза аномального гемоглобина, заключающегося, напр., в замене аминокислот в первичной структуре глобина- белка молекулы гемоглобина (см. Анемии ; Гемоглобин, гемоглобины нестабильные ; Гемоглобинопатии). При некоторых патол, состояниях у человека и животных наблюдается выход из мышц и выделение с мочой миоглобина (см. Миоглобинурия).

    Из вердогемоглобина образуется желчный пигмент зеленого цвета биливердин, представляющий собой линейное производное тетрапиррола. Он обнаружен в желчи, а также в тканях животных и человека. При восстановлении биливердина образуется другой желчный пигмент красновато-желтого цвета билирубин (см.). Желчные пигменты, попадающие в кишечник с желчью, частично всасываются в кровь и поступают в печень по системе воротной вены (см. Желчные пигменты). Свободный (непрямой) билирубин малорастворим и токсичен; он обезвреживается в печени путем образования растворимого диглюкуронида - парного соединения билирубина с глюкуроновой к-той (прямого билирубина). В пищеварительном тракте при восстановлении билирубина образуются основные пигменты кала и мочи - уробилиноген и стеркобилиноген, к-рые на воздухе окисляются в стеркобилин (см.) и уробилин (см.). Нормальное содержание непрямого билирубина в крови составляет 0,2- 0,8 мг/100 мл. При повышении содержания билирубина в крови выше 2 мг/100 мл развивается желтуха (см.). При желтухе в мочу через почечный фильтр проходит прямой билирубин (см. Билирубинурия). При нарушении функций печени в моче иногда обнаруживается большое количество уробилина (см. Уробилинурия). Нарушение порфиринового обмена приводит к развитию заболеваний, относящихся к группе порфирии (см.). При порфиринурии, сопровождающей ряд заболеваний, отмечают повышенное выделение р мочой порфиринов.

    При некоторых патол, состояниях (напр., при Е-гиповитаминозе), а также при старении в нервной, мышечной и соединительной тканях накапливается пигмент липидной природы липофусцин (см.). У животных избыточное образование пигментов липидной природы, возникающих, очевидно, в результате аутоокисления ненасыщенных липидов и последующей полимеризации продуктов их окисления, обнаружено при действии ионизирующей радиации и злокачественных опухолях.

    Животный организм не способен синтезировать ряд пигментов, обнаруженных у растений. Однако биосинтез хлорофилла (см.) в растительных тканях имеет общие черты с образованием порфиринов у животных. Каротиноиды (см.) синтезируются при последовательной конденсации молекул ацетил-КоА через образование мевалоновой к-ты. При окислении каротинов образуются ксантофиллы. Каротиноиды, поступившие в организм животных с растительной пищей, подвергаются окислительному расщеплению (этот процесс происходит гл. обр. в стенке кишок) с образованием ретиналя, альдегида витамина А. Образующийся затем витамин А поступает в кровь и накапливается в различных тканях, в т. ч. в печени. В фоторецепторах сетчатки ретиналь, соединяясь с белком опсином, образует родопсин (см.), обеспечивающий различение света (см. Зрительные пигменты).

    При нарушении превращения каротиноидов в витамин А развивается гиповитаминоз А, сопровождающийся значительными изменениями эпителия, поражением глаз и т. д. Экзогенная форма недостаточности витамина А встречается редко (см. Витаминная недостаточность). Избыток каротина в организме человека приводит к каротинемии (см.).

    Флавоноиды и антоцианидины (см. Флавоны , Антоцианы) в растительном организме синтезируются из шикимовой к-ты или при конденсации двух молекул малонил-КоА с одной молекулой ацетил-КоА. В организме человека флавоноиды пищи распадаются на более мелкие фрагменты; иногда продукты распада флавоноидов обнаруживаются в моче в составе гомопирокатеховой, гомованилиновой и м-оксифенилуксусной к-т.

    Методы определения - см. в статьях, посвященных описанию отдельных пигментов или групп пигментов.

    Библиография: См. библиогр, к ст. Гемоглобин , Дыхательные пигменты , Желчные пигменты , Миоглобин , Пигменты .

    Н. В. Гуляева.

    В физиологических условиях в организме (весом 70 кг) обрадуется за сутки примерно 250-300 мг билирубина. 70-80% этого количества приходится на гемоглобин эритроцитов, подвергающихся разрушению в селезенке. Ежедневно разрушается примерно около 1% эритроцитов или 6-7 г гемоглобина. Из каждого грамма гемоглобина образуется примерно 35 мг билирубина. 10-20% билирубина освобождается при расщеплении некоторых гемопротеинов, содержащих гем (миоглобин, цитохромы, каталаза и др.). Небольшая часть билирубина выделяется из костного мозга при лизисе незрелых эритроидных клеток костного мозга. Основным продуктом расщепления гемопротеинов является билирубин IX, продолжительность циркуляции которого в крови составляет 90 мин. Билирубин является продуктом последовательных стадий превращения гемоглобина, и в норме его содержание в крови не превышает 2 мг% или 20 мкмоль/л.

    Нарушения пигментного обмена могут возникать в результате избыточного образования билирубина или при нарушении его выведения через желчный шунт. В обоих случаях повышается содержание билирубина в плазме крови свыше 20,5 мкмоль/л, возникает иктеричность склер и слизистых. При билирубинемии более 34 мкмоль/л появляется иктеричность кожи.

    Вследствие аутокаталитического окисления двухвалентное железо гема переходит в трехвалентное, а сам гем превращается в оксипорфирин и далее – в вердоглобин. Затем железо отщепляется от вердоглобина, и под действием микросомального фермента гемоксигеназы вердоглобин превращается в биливердин, а тот при участии биливердинредуктазы переходит в билирубин. Образующийся таким образом билирубин называется непрямым или свободным, или, более понятно, – неконъюгированным . Он нерастворим в воде, но хорошо растворяется в жирах и поэтому токсичен для головного мозга. Особенно это касается той формы билирубина, которая не связана с альбуминами. Попадая в печень, свободный билирубин под действие фермента глюкуронилтрансферазы образует парные соединения с глюкуроновой кислотой и превращается в конъюгированный, прямой , или связанный билирубин – билирубин моноглюкуронид или билирубин диглюкуронид. Прямой билирубин растворим в воде и менее токсичен для нейронов головного мозга.

    Билирубин диглюкуронид с желчью поступает в кишечник, где под действием микрофлоры происходит отщепление глюкуроновой кислоты и образование мезобилирубина и мезобилиногена, или уробилиногена. Часть уробилиногена всасывается из кишечника и по воротной вене поступает в печень, где полностью расщепляется. Возможно поступление уробилина в общий кровоток, откуда он попадает в мочу. Часть мезобилиногена, находящегося в толстой кишке, восстанавливается до стеркобилиногена под влиянием анаэробной микрофлоры. Последний выделяется с калом в виде окисленной формы стеркобилина. Принципиальной разницы между стеркобилинами и уробилинами нет. Поэтому в клинике их называют уробилиновыми и стеркобилиновыми телами. Таким образом, в норме в крови находят общий билирубин 8-20 мкмоль/л, или 0,5-1,2 мг%, из которого 75% относится к неконъюгированному билирубину, 5% – билирубин-моноглюкуронид, 25% – билирубин-диглюкуронид. В моче обнаруживается до 25 мг/л в сутки уробилиногеновых тел.


    Возможности печеночной ткани образовывать парные соединения билирубина с глюкуроновой кислотой очень высоки. Поэтому если образование прямого билирубина не нарушено, а имеется расстройство внешнесекреторной функции гепатоцитов, уровень билирубинемии может достигать значений от 50 до 70 мкмоль/л. При повреждении паренхимы печени содержание билирубина в плазме повышается до 500 мкмоль/л и более. В зависимости от причины (надпеченочная, печеночная, подпеченочная желтухи) в крови может повышаться прямой и непрямой билирубин (Таблица 3).

    Билирубин плохо растворим в воде и плазме крови. Он образует специфическое соединение с альбумином по высокоаффинному центру (свободный, или непрямой билирубин) и транспортируется в печень. Билирубин в избыточном количестве непрочно связывается с альбумином, поэтому легко отщепляется от белка и диффундирует в ткани. Некоторые антибиотики и другие лекарственные вещества, конкурирующие с билирубином за высокоаффинный центр альбумина, способны вытеснять билирубин из комплекса с альбумином.

    Желтуха (icterus) – синдром, характеризующийся желтушным окрашиванием кожи, слизистых, склер, мочи, жидкости полостей тела в результате отложения и содержания в них желчных пигментов – билирубина при нарушениях желчеобразования и желчевыделения.

    По механизму развития выделяют три вида желтух:

    • Надпеченочная , или гемолитическая желтуха, связанная с повышенным желчеобразованием вследствие усиленного распада эритроцитов и гемоглобин содержащих эритрокариоцитов (например, при В 12 , фолиево-дефицитных анемиях);

    · Печеночная , или паренхиматозная желтуха, вызванная нарушением образования и выделения желчи гепатоцитами при их повреждении, холестазе и энзимопатиях;

    · Подпеченочная , или механическая желтуха, возникающая в результате механического препятствия выделению желчи по желчевыводящим путям.

    Надпеченочная, или гемолитическая, желтуха. Этиология : причины следует связать с усиленным гемолизом эритроцитов и разрушением гемоглобинсодержащих эритрокариоцитов в результате неэффективного эритропоэза (острый гемолиз, вызванный разными факторами, врожденные и приобретенные гемолитические анемии, дизэритропоэтические анемии и т.п.).

    Патогенез . Усиленный против нормы распад эритроцитов ведет к увеличенному образованию свободного, непрямого, неконъюгированного билирубина, который является токсичным для ЦНС и других тканей, в т.ч. для гемопоэтических клеток костного мозга (развитие лейкоцитоза, сдвиг лейкоцитарной формулы влево). Хотя печень обладает значительными возможностями для связывания и образования неконъюгированного билирубина, при гемолитических состояниях возможна функциональная ее недостаточность или даже повреждение. Это ведет к понижению способности гепатоцитов связывать неконъюгированный билирубин и далее превращать его в конъюгированный. Содержание билирубина в желчи увеличивается, что является фактором риска для образования пигментных камней.

    Таким образом, не весь свободный билирубин подвергается переработке в конъюгированный, поэтому определенная его часть в избыточном количестве циркулирует в крови.

    • Это получило наименование (1) гипербилирубинемия (более 2 мг%) за счет неконъюгированного билирубина.
    • (2) ряд тканей организма испытывает токсическое действие прямого билирубина (сама печень, центральная нервная система).
    • (3) вследствие гипербилирубинемии в печени и других экскреторных органах образуется избыточное количество желчных пигментов:
      • (а) глюкурониды билирубина,
      • (б) уробилиноген,
      • (в) стеркобилиноген, (что ведет к усиленному их выведению),
    • (4) выведение избыточного количества уробилиновых и стеркобилиновых тел с калом и мочой.
    • (5) вместе с тем, имеет место гиперхолия – темная окраска кала.

    Итак, при гемолитической желтухе наблюдаются:

    Гипербилирубинемия за счет неконъюгированного билирубина; повышенное образование уробилина ; повышенное образование стеркобилина ; гиперхолический кал; отсутствие холемии , т.е. в крови не обнаруживается повышенного содержания желчных кислот.

    Печеночная, или паренхиматозная, желтуха. Этиология. Причины печеночной желтухи разнообразны

    • Инфекции (вирусы гепатита A, B, C , сепсис и т.п.);

    · Интоксикации (отравление грибным ядом, алкоголем, мышьяком, лекарственными препаратами и т.п.). Считается, например, что около 2% всех случаев желтух у госпитализированных больных имеют лекарственное происхождение;

    • Холестаз (холестатический гепатит);
    • Генетический дефект ферментов, обеспечивающих транспорт неконъюгированного билирубина, ферментов, обеспечивающих конъюгирование билирубина – глюкуронилтрансферазы.
    • При генетически обусловленных заболеваниях (например, синдром Криглера-Найяра, синдром Дабина-Джонсона и др.) Имеется ферментативный дефект в реакции конъюгации и при секреции. У новорожденных может быть транзиторная ферментативная недостаточность, проявляющаяся в гипербилирубинемии.

    Патогенез. При повреждении гепатоцитов, как это бывает при гепатитах или приеме гепатотропных веществ, в разной степени нарушаются процессы биотрансформации и секреции, что отражается в соотношении прямого и непрямого билирубина. Однако обычно преобладает прямой билирубин. При воспалительных и иных повреждениях гепатоцитов возникают сообщения между желчными путями, кровеносными и лимфатическими сосудами, через которое желчь поступает в кровь (и лимфу) и частично в желчевыводящие пути. Этому же может способствовать отек перипортальных пространств. Набухшие гепатоциты сдавливают желчные протоки, чем создаются механические затруднения оттоку желчи. Метаболизм и функции печеночных клеток нарушаются, что сопровождается следующими симптомами:

    · Гипербилирубинемия за счет конъюгированного и, в меньшей степени, непрямого билирубина. Повышение содержания неконъюгированного билирубина обусловлено снижением активности глюкуронилтрасферазы в поврежденных гепатоцитах и нарушением образования глюкуронидов.

    • Холалемия – наличие в крови желчных кислот.
    • Увеличение в крови конъюгированного растворимого в воде билирубина ведет к появлению в моче билирубина – билирубинурия , а дефицит желчи в просвете кишечника – постепенному снижению содержания уробилина в моче вплоть до полного его отсутствия. Прямой билирубин является водорастворимым соединением. Поэтому он фильтруется через почечный фильтр и выводится с мочой
    • Снижение количества стеркобилина вследствие ограниченного его образования в кишках, куда поступает уменьшенное количество глюкуронидов билирубина в составе желчи.
    • Снижение количества желчных кислот в кишечном химусе и кале вследствие гипохолии. Уменьшенное поступление желчи в кишечник (гипохолия) вызывает расстройства пищеварения.
    • Более весомое значение имеют нарушения межуточного обмена белков, жиров и углеводов, а также дефицит витаминов. Снижается защитная функция печени, страдает свертывающая функция крови.

    Таблица 3

    Патогенетические механизмы гипербилирубинемии

    Пигментный обмен

    Под пигментным обменом подразумевают обычно все процессы образования, превращения и распада пигмента крови (гемоглобина), точнее его пигментной небелковой части, и главного деривата этого пигмента-- желчного пигмента (билирубина). В настоящее время однако известны и другие пигменты, которые по хим. составу по - видимому, близки НЬ -- это-НЬ мышц, цитохромы, дыхательный фермент Варбурга (Warburg) и другие еще весьма мало изученные пигменты. Отделить процессы образования, превращения и распада этих пигментов от процессов обмена НЬ пока невозможно. В более широком смысле под П..о. можно подразумевать процессы образования, превращения и распада всех пигментов организма, т. е. как вышеперечисленных пигментов, группы НЬ, так и всех других пигментов-- меланина, липохромов и т. д.

    ФИЗИОЛОГИЯ ОБМЕНА БИЛИРУБИНА

    Процесс превращения свободного (непрямого) билирубина, образующегося при разрушении эритроцитов и распаде гемоглобина в органах ретикулоэндотелиальной системы (РЭС), в билирубин-диглюкуронид (связанный, или прямой билирубин) в печеночной клетке (рис. 1) осуществляется в три этапа (на рисунке обозначены римскими цифрами):

    Рис. 1.

    Бн - свободный (непрямой) билирубин; Б-Г - билирубин-глюкуронид (связанный, или прямой билирубин); Мбг - мезобилиноген (уробилиноген).

    Римскими цифрами обозначены этапы обезвреживания

    1. I этап -- захват билирубина (Б) печеночной клеткой после отщепления альбумина;

    2. II этап -- образование водорастворимого комплекса билирубин-диглюкуронида (Б-Г);

    3. III этап -- выделение образовавшегося связанного (прямого) билирубина (Б-Г) из печеночной клетки в желчные канальцы (проточки).

    Дальнейший метаболизм билирубина связан с поступлением его в желчные пути и кишечник. В нижних отделах желчевыводящих путей и кишечнике под воздействием микробной флоры происходит постепенное восстановление связанного билирубина до уробилиногена. Часть уробилиногена (мезобилиноген) всасывается в кишечнике и по системе воротной вены вновь попадает в печень, где в норме происходит практически полное его разрушение (см. рис. 1). Другая часть уробилиногена (стеркобилиноген) всасывается в кровь в геморроидальных венах, попадая в общий кровоток и выделяясь почками с мочой в незначительных количествах в виде уробилина, который часто не выявляется клиническими лабораторными методами. Наконец, третья часть уробилиногена превращается в стеркобилин и выделяется с калом, обусловливая его характерную темно-коричневую окраску.

    Методы определения билирубина и его метаболитов

    Определение билирубина в сыворотке крови

    В клинической практике используются различные методы определения билирубина и его фракций в сыворотке крови.

    Наиболее распространенным из них является биохимический метод Ендрассика-Грофа . Он основан на взаимодействии билирубина с диазотированной сульфаниловой кислотой с образованием азопигментов. При этом связанный билирубин (билирубин-глюкуронид) дает быструю («прямую») реакцию с диазореактивом, тогда как реакция свободного (не связанного с глюкуронидом) билирубина протекает значтельно медленнее. Для ее ускорения применяют различные вещества-акселераторы, например кофеин (метод Ендрассика-Клеггорна-Грофа), которые освобождают билирубин из белковых комплексов («непрямая» реакция). В результате взаимодействия с диазотированной сульфаниловой кислотой билирубин образует окрашенные соединения. Измерения проводят на фотометре.

    ХОД ОПРЕДЕЛЕНИЯ

    В 3 пробирки (2 опытные пробы и холостая) вводят реактивы, как указано в таблице. Диазореакция

    Для определения связанного билирубина измерение проводят спустя 5--10 мин после добавления диазосмеси, так как при длительном стоянии в реакцию вступает несвязанный билирубин. Для определения общего билирубина пробу для развития окраски оставляют стоять 20 мин, после чего измеряют на фотометре. При дальнейшем стоянии окраска не изменяется. Измерение проводят при длине волны 500--560 нм (зеленый светофильтр) в кювете с толщиной слоя в 0,5 см против воды. Из показателей, полученных при измерении общего и связанного билирубина, вычитают показатель холостой пробы. Расчет производят по калибровочному графику. Находят содержание общего и связанного билирубина.Метод Ендрассика, Клеггорна и Грофа прост, удобен в практике, не связан с применением дефицитных реактивов и является наиболее приемлемым для практических лабораторий.Определение рекомендуется приводить сразу же после забора проб, чтобы избежать окисления билирубина на свету. Гемолиз сыворотки снижает количество билирубина пропорционально присутствию гемоглобина. Следовательно, сыворотка крови не должна быть гемолизирована.

    Ряд веществ -- гидрокортизон, андрогены, эритромицин, глюкокортикоиды, фенобарбитал, аскорбиновая кислота -- вызывают интерференцию.

    Постоение калибровочного графика при методе ендрассика.

    Способ I -- Шелонга-Вендес использованием стабилизирующего свойства белка сыворотки крови. Основной раствор билирубина: в колбе вместимостью 50 мл растворяют 40 мг билирубина в 30--35 мл 0,1 моль/л раствора карбоната натрия Na 2 CO 3 . Хорошо взбалтывают, не допуская образования пузырьков. Доводят до 50 мл 0,1 моль/л раствором Nа 2 СО 3 и несколько раз перемешивают. Раствор стоек только в течение 10 мин от начала приготовления. В дальнейшем происходит окисление билирубина. Рабочий раствор билирубина: к 13,9 мл свежей негемолизированной сыворотки здорового человека добавляют 2 мл свежеприготовленного основного раствора билирубина и 0,1 мл 4 моль/л раствора уксусной кислоты. Хорошо перемешивают. При этом выделяются пузырьки углекислого газа. Рабочий раствор стоек в течение нескольких дней. Этот раствор содержит точно на 100 мг/л, или 171 мкмоль/л, билирубина больше, чем сыворотка, взятая для приготовления раствора. Чтобы исключить при расчетах количество билирубина, содержащегося в этой сыворотке, при измерении на фотометре из величин экстинкции калибровочных проб вычитают величины экстинкции соответствующих разведений компенсационной жидкости. Для приготовления компенсационной жидкости смешивают 13,9 мл той же сыворотки, которая использовалась для приготовления калибровочного раствора билирубина, 2 мл 0,1 моль/л раствора карбоната натрия и 0,1 мл 4 моль/л раствора уксусной кислоты. Для построения калибровочного графика готовят ряд разведений с различным содержанием билирубина. К полученным разведениям прибавляют по 1,75 мл кофеинового реактива и по 0,25 мл диазосмеси. При появлении помутнения можно добавить по 3 капли 30%-ного раствора едкого натра. Измерение проводят при тех же условиях, что и в опытных пробах, через 20 мин. Из компенсационной жидкости готовят разведения, аналогичные калибровочным (как указано ниже), и далее обрабатывают их так же, как калибровочные пробы.

    Таблица. Определение связанного билирубина

    · Способ второй - выстраивать калибровочный график по готовому набору реактивов.(Например, набор Билирубин -эталон фирмы Лахема, включающий в себя билирубин лиофилизированный (точная концентрация билирубина приведена на этикетке флакона); и альбумин лиофилизированный.)