Комплекс гольджи местонахождение в клетке. Аппарат Гольджи: строение и функции органеллы


Эндоплазматическая сеть, или эндоплазматический ретикулум, представляет собой систему трубочек и полостей, пронизывающих цитоплазму клетки. ЭПС образована мембраной, которая имеет такое же строение, как и плазматическая мембрана. Трубочки и полости ЭПС могут занимать до 50% объема клетки и нигде не обрываются и не открываются в цитоплазму. Различают гладкую и шероховатую (гранулярную) ЭПС. На шероховатой ЭПС расположено множество рибосом. Именно здесь синтезируется большинство белков. На поверхности гладкой ЭПС идет синтез углеводов и липидов.

Функции гранулярной эндоплазматической сети:

  • · синтез белков, предназначенных для выведения из клетки ("на экспорт");
  • · отделение (сегрегация) синтезированного продукта от гиалоплазмы;
  • · конденсация и модификация синтезированного белка;
  • · транспорт синтезированных продуктов в цистерны пластинчатого комплекса или непосредственно из клетки;
  • · синтез билипидных мембран.

Гладкая эндоплазматическая сеть представлена цистернами, более широкими каналами и отдельными везикулами, на внешней поверхности которых отсутствуют рибосомы.

Функции гладкой эндоплазматической сети:

  • · участие в синтезе гликогена;
  • · синтез липидов;
  • · дезинтоксикационная функция - нейтрализация токсических веществ, посредством соединения их с другими веществами.

Комплекс (аппарат) Гольджи.

Система внутриклеточных цистерн, в которых накапливаются вещества, синтезированные клеткой, носит название комплекса (аппарата) Гольджи. Здесь же эти вещества претерпевают дальнейшие биохимические превращения, упаковываются в мембранные пузырьки и переносятся в те места цитоплазмы, где они необходимы, или же транспортируются к клеточной мембране и выходят за пределы клетки (рис. 32). Комплекс Гольджи построен из мембран и расположен рядом с ЭПС, но не сообщается с ее каналами. Поэтому все вещества, синтезированные на мембранах ЭПС, переносятся в комплекс Гольджи внутри мембранных пузырьков, отпочковывающихся от ЭПС и сливающихся затем с комплексом Гольджи. Еще одна важная функция комплекса Гольджи -- это сборка мембран клетки. Вещества, из которых состоят мембраны (белки, липиды), поступают в комплекс Гольджи из ЭПС, в полостях комплекса Гольджи собираются участки мембран, из которых изготовляются особые мембранные пузырьки. Они передвигаются по цитоплазме в те места клетки, где требуется достроить мембрану.

Функции аппарата Гольджи:

  • · сортировку, накопление и выведение секреторных продуктов;
  • · накопление молекул липидов и образование липопротеидов;
  • · образование лизосом;
  • · синтез полисахаридов для образования гликопротеидов, восков, камеди, слизей, веществ матрикса клеточных стенок растений;
  • · формирование клеточной пластинки после деления ядра в растительных клетках;
  • · формирование сократимых вакуолей простейших.

Комплекс Гольджи – это мембранная структура, присущая любой эукариотической клетке.

Аппарата Гольджи представлен сплющенными цистернами (или мешками), собранными в стопку. Каждая цистерна немного изогнута и имеет выпуклую и вогнутую поверхности. Средний диаметр цистерн составляет около 1 мкм. В центре цистерны ее мембраны сближены, а на периферии часто формируют расширения, или ампулы, от которых отшнуровываются пузырьки . Пакеты плоских цистерн количеством в среднем около 5-10 формируют диктиосому . Кроме цистерн, в комплексе Гольджи присутствуют транспортные и секреторные пузырьки . В диктиосоме в соответствии с направлением кривизны изогнутых поверхностей цистерн различают две поверхности. Выпуклая поверхность называется незрелой, или цис-поверхностью . Она обращена к ядру или к канальцам гранулярной эндоплазматической сети и связана с последней пузырьками, отшнуровывающимися от гранулярной сети и приносящими молекулы белка в диктиосому на дозревание и оформление в мембрану. Противоположная трансповерхность диктиосомы вогнута. Она обращена к плазмолемме и именуется зрелой потому, что от ее мембран отшнуровываются секреторные пузырьки, содержащие готовые к выведению из клетки продукты секреции.

Комплекс Гольджи участвует:

  • в накоплении продуктов, синтезированных в эндоплазматической сети,
  • в их химической перестройке и созревании.

В цистернах комплекса Гольджи происходит синтез полисахаридов, их комплексирование с белковыми молекулами.

Одна из главных функций комплекса Гольджи - формирование готовых секреторных продуктов , которые выводятся за пределы клетки путем экзоцитоза. Важнейшими для клетки функциями комплекса Гольджи также являются обновление клеточных мембран , в том числе и участков плазмолеммы, а также замещение дефектов плазмолеммы в процессе секреторной деятельности клетки.

Комплекс Гольджи считается источником образования первичных лизосом , хотя их ферменты синтезируются и в гранулярной сети. Лизосомы представляют собой внутриклеточно формирующиеся секреторные вакуоли, заполненные гидролитическими ферментами, необходимыми для процессов фаго- и аутофагоцитоза. На светооптическом уровне лизосомы можно индентифицировать и судить о степени их развития в клетке по активности гистохимической реакции на кислую фосфатазу - ключевой лизосомальный энзим. При электронной микроскопии лизосомы определяются как пузырьки, ограниченные от гиалоплазмы мембраной. Условно выделяют 4 основных вида лизосом:

  • первичные,
  • вторичные лизосомы,
  • аутофагосомы,
  • остаточные тельца.

Первичные лизосомы - это мелкие мембранные пузырьки (средний диаметр их составляет около 100 нм), заполненные гомогенным мелкодисперсным содержимым, представляющим собой набор гидролитических ферментов. В лизосомах идентифицированы около 40 ферментов (протеазы, нуклеазы, гликозидазы, фосфорилазы, сульфатазы), оптимальный режим действия которых рассчитан на кислую среду (рН 5). Лизосомальные мембраны содержат специальные белки-носители для транспорта из лизосомы в гиалоплазму продуктов гидролитического расщепления - аминокислот, Сахаров и нуклеотидов. Мембрана лизосом устойчива по отношению к гидролитическим ферментам.

Вторичные лизосомы образуются при слиянии первичных лизосом с эндоцитозными либо с пиноцитозными вакуолями. Иными словами, вторичные лизосомы - это внутриклеточные пищеварительные вакуоли, ферменты которых поставляются первичными лизосомами, а материал для переваривания - эндоцитозной (пиноцитозной) вакуолью. Строение вторичных лизосом весьма разнообразно и изменяется в процессе гидролитического расщепления содержимого. Ферменты лизосом расщепляют попавшие в клетку биологические вещества, в результате чего образуются мономеры, которые транспортируются через мембрану лизосомы в гиалоплазму, где утилизируются или включаются в разнообразные синтетические и метаболические реакции.

Если взаимодействию с первичными лизосомами и гидролитическому расщеплению их ферментами подвергаются собственные структуры клетки (стареющие органеллы, включения и пр.), формируется аутофагосома. Аутофагоцитоз является естественным процессом в жизнедеятельности клетки и играет большую роль в обновлении ее структур при внутриклеточной регенерации.

Остаточные тельца это одна из финальных стадий существования фаго- и аутолизосом и обнаруживаются при незавершенном фаго- или аутофагоцитозе и впоследствии выделяются из клетки путем экзоцитоза. Они имеют уплотненное содержимое, часто наблюдается вторичная структуризация непереваренных соединений (например, липиды образуют сложные слоистые образования).

Органоиды — постоянные, обязательно присутствующие, компоненты клетки, выполняющие специфические функции.

Эндоплазматическая сеть

Эндоплазматическая сеть (ЭПС) , или эндоплазматический ретикулум (ЭПР) , — одномембранный органоид. Представляет собой систему мембран, формирующих «цистерны» и каналы, соединенных друг с другом и ограничивающих единое внутреннее пространство — полости ЭПС. Мембраны с одной стороны связаны с цитоплазматической мембраной, с другой — с наружной ядерной мембраной. Различают два вида ЭПС: 1) шероховатая (гранулярная), содержащая на своей поверхности рибосомы, и 2) гладкая (агранулярная), мембраны которой рибосом не несут.

Функции: 1) транспорт веществ из одной части клетки в другую, 2) разделение цитоплазмы клетки на компартменты («отсеки»), 3) синтез углеводов и липидов (гладкая ЭПС), 4) синтез белка (шероховатая ЭПС), 5) место образования аппарата Гольджи.

Или комплекс Гольджи , — одномембранный органоид. Представляет собой стопки уплощенных «цистерн» с расширенными краями. С ними связана система мелких одномембранных пузырьков (пузырьки Гольджи). Каждая стопка обычно состоит из 4-х-6-ти «цистерн», является структурно-функциональной единицей аппарата Гольджи и называется диктиосомой. Число диктиосом в клетке колеблется от одной до нескольких сотен. В растительных клетках диктиосомы обособлены.

Аппарат Гольджи обычно расположен около клеточного ядра (в животных клетках часто вблизи клеточного центра).

Функции аппарата Гольджи: 1) накопление белков, липидов, углеводов, 2) модификация поступивших органических веществ, 3) «упаковка» в мембранные пузырьки белков, липидов, углеводов, 4) секреция белков, липидов, углеводов, 5) синтез углеводов и липидов, 6) место образования лизосом. Секреторная функция является важнейшей, поэтому аппарат Гольджи хорошо развит в секреторных клетках.

Лизосомы

Лизосомы — одномембранные органоиды. Представляют собой мелкие пузырьки (диаметр от 0,2 до 0,8 мкм), содержащие набор гидролитических ферментов. Ферменты синтезируются на шероховатой ЭПС, перемещаются в аппарат Гольджи, где происходит их модификация и упаковка в мембранные пузырьки, которые после отделения от аппарата Гольджи становятся собственно лизосомами. Лизосома может содержать от 20 до 60 различных видов гидролитических ферментов. Расщепление веществ с помощью ферментов называют лизисом .

Различают: 1) первичные лизосомы , 2) вторичные лизосомы . Первичными называются лизосомы, отшнуровавшиеся от аппарата Гольджи. Первичные лизосомы являются фактором, обеспечивающим экзоцитоз ферментов из клетки.

Вторичными называются лизосомы, образовавшиеся в результате слияния первичных лизосом с эндоцитозными вакуолями. В этом случае в них происходит переваривание веществ, поступивших в клетку путем фагоцитоза или пиноцитоза, поэтому их можно назвать пищеварительными вакуолями.

Автофагия — процесс уничтожения ненужных клетке структур. Сначала подлежащая уничтожению структура окружается одинарной мембраной, затем образовавшаяся мембранная капсула сливается с первичной лизосомой, в результате также образуется вторичная лизосома (автофагическая вакуоль), в которой эта структура переваривается. Продукты переваривания усваиваются цитоплазмой клетки, но часть материала так и остается непереваренной. Вторичная лизосома, содержащая этот непереваренный материал, называется остаточным тельцем. Путем экзоцитоза непереваренные частицы удаляются из клетки.

Автолиз — саморазрушение клетки, наступающее вследствие высвобождения содержимого лизосом. В норме автолиз имеет место при метаморфозах (исчезновение хвоста у головастика лягушек), инволюции матки после родов, в очагах омертвления тканей.

Функции лизосом: 1) внутриклеточное переваривание органических веществ, 2) уничтожение ненужных клеточных и неклеточных структур, 3) участие в процессах реорганизации клеток.

Вакуоли

Вакуоли — одномембранные органоиды, представляют собой «емкости», заполненные водными растворами органических и неорганических веществ. В образовании вакуолей принимают участие ЭПС и аппарат Гольджи. Молодые растительные клетки содержат много мелких вакуолей, которые затем по мере роста и дифференцировки клетки сливаются друг с другом и образуют одну большую центральную вакуоль . Центральная вакуоль может занимать до 95% объема зрелой клетки, ядро и органоиды оттесняются при этом к клеточной оболочке. Мембрана, ограничивающая растительную вакуоль, называется тонопластом. Жидкость, заполняющая растительную вакуоль, называется клеточным соком . В состав клеточного сока входят водорастворимые органические и неорганические соли, моносахариды, дисахариды, аминокислоты, конечные или токсические продукты обмена веществ (гликозиды, алкалоиды), некоторые пигменты (антоцианы).

В животных клетках имеются мелкие пищеварительные и автофагические вакуоли, относящиеся к группе вторичных лизосом и содержащие гидролитические ферменты. У одноклеточных животных есть еще сократительные вакуоли, выполняющие функцию осморегуляции и выделения.

Функции вакуоли: 1) накопление и хранение воды, 2) регуляция водно-солевого обмена, 3) поддержание тургорного давления, 4) накопление водорастворимых метаболитов, запасных питательных веществ, 5) окрашивание цветов и плодов и привлечение тем самым опылителей и распространителей семян, 6) см. функции лизосом.

Эндоплазматическая сеть, аппарат Гольджи, лизосомы и вакуоли образуют единую вакуолярную сеть клетки , отдельные элементы которой могут переходить друг в друга.

Митохондрии

1 — наружная мембрана;
2 — внутренняя мембрана; 3 — матрикс; 4 — криста; 5 — мультиферментная система; 6 — кольцевая ДНК.

Форма, размеры и количество митохондрий чрезвычайно варьируют. По форме митохондрии могут быть палочковидными, округлыми, спиральными, чашевидными, разветвленными. Длина митохондрий колеблется в пределах от 1,5 до 10 мкм, диаметр — от 0,25 до 1,00 мкм. Количество митохондрий в клетке может достигать нескольких тысяч и зависит от метаболической активности клетки.

Митохондрия ограничена двумя мембранами. Наружная мембрана митохондрий (1) гладкая, внутренняя (2) образует многочисленные складки — кристы (4). Кристы увеличивают площадь поверхности внутренней мембраны, на которой размещаются мультиферментные системы (5), участвующие в процессах синтеза молекул АТФ. Внутреннее пространство митохондрий заполнено матриксом (3). В матриксе содержатся кольцевая ДНК (6), специфические иРНК, рибосомы прокариотического типа (70S-типа), ферменты цикла Кребса.

Митохондриальная ДНК не связана с белками («голая»), прикреплена к внутренней мембране митохондрии и несет информацию о строении примерно 30 белков. Для построения митохондрии требуется гораздо больше белков, поэтому информация о большинстве митохондриальных белков содержится в ядерной ДНК, и эти белки синтезируются в цитоплазме клетки. Митохондрии способны автономно размножаться путем деления надвое. Между наружной и внутренней мембранами находится протонный резервуар , где происходит накопление Н + .

Функции митохондрий: 1) синтез АТФ, 2) кислородное расщепление органических веществ.

Согласно одной из гипотез (теория симбиогенеза) митохондрии произошли от древних свободноживущих аэробных прокариотических организмов, которые, случайно проникнув в клетку-хозяина, затем образовали с ней взаимовыгодный симбиотический комплекс. В пользу этой гипотезы свидетельствуют следующие данные. Во-первых, митохондриальная ДНК имеет такие же особенности строения как и ДНК современных бактерий (замкнута в кольцо, не связана с белками). Во-вторых, митохондриальные рибосомы и рибосомы бактерий относятся к одному типу — 70S-типу. В-третьих, механизм деления митохондрий сходен с таковым бактерий. В-четвертых, синтез митохондриальных и бактериальных белков подавляется одинаковыми антибиотиками.

Пластиды

1 — наружная мембрана; 2 — внутренняя мембрана; 3 — строма; 4 — тилакоид; 5 — грана; 6 — ламеллы; 7 — зерна крахмала; 8 — липидные капли.

Пластиды характерны только для растительных клеток. Различают три основных типа пластид : лейкопласты — бесцветные пластиды в клетках неокрашенных частей растений, хромопласты — окрашенные пластиды обычно желтого, красного и оранжевого цветов, хлоропласты — зеленые пластиды.

Хлоропласты. В клетках высших растений хлоропласты имеют форму двояковыпуклой линзы. Длина хлоропластов колеблется в пределах от 5 до 10 мкм, диаметр — от 2 до 4 мкм. Хлоропласты ограничены двумя мембранами. Наружная мембрана (1) гладкая, внутренняя (2) имеет сложную складчатую структуру. Наименьшая складка называется тилакоидом (4). Группа тилакоидов, уложенных наподобие стопки монет, называется граной (5). В хлоропласте содержится в среднем 40-60 гран, расположенных в шахматном порядке. Граны связываются друг с другом уплощенными каналами — ламеллами (6). В мембраны тилакоидов встроены фотосинтетические пигменты и ферменты, обеспечивающие синтез АТФ. Главным фотосинтетическим пигментом является хлорофилл, который и обусловливает зеленый цвет хлоропластов.

Внутреннее пространство хлоропластов заполнено стромой (3). В строме имеются кольцевая «голая» ДНК, рибосомы 70S-типа, ферменты цикла Кальвина, зерна крахмала (7). Внутри каждого тилакоида находится протонный резервуар, происходит накопление Н + . Хлоропласты, также как митохондрии, способны к автономному размножению путем деления надвое. Они содержатся в клетках зеленых частей высших растений, особенно много хлоропластов в листьях и зеленых плодах. Хлоропласты низших растений называют хроматофорами.

Функция хлоропластов: фотосинтез. Полагают, что хлоропласты произошли от древних эндосимбиотических цианобактерий (теория симбиогенеза). Основанием для такого предположения является сходство хлоропластов и современных бактерий по ряду признаков (кольцевая, «голая» ДНК, рибосомы 70S-типа, способ размножения).

Лейкопласты. Форма варьирует (шаровидные, округлые, чашевидные и др.). Лейкопласты ограничены двумя мембранами. Наружная мембрана гладкая, внутренняя образует малочисленные тилакоиды. В строме имеются кольцевая «голая» ДНК, рибосомы 70S-типа, ферменты синтеза и гидролиза запасных питательных веществ. Пигменты отсутствуют. Особенно много лейкопластов имеют клетки подземных органов растения (корни, клубни, корневища и др.). Функция лейкопластов: синтез, накопление и хранение запасных питательных веществ. Амилопласты — лейкопласты, которые синтезируют и накапливают крахмал, элайопласты — масла, протеинопласты — белки. В одном и том же лейкопласте могут накапливаться разные вещества.

Хромопласты. Ограничены двумя мембранами. Наружная мембрана гладкая, внутренняя или также гладкая, или образует единичные тилакоиды. В строме имеются кольцевая ДНК и пигменты — каротиноиды, придающие хромопластам желтую, красную или оранжевую окраску. Форма накопления пигментов различная: в виде кристаллов, растворены в липидных каплях (8) и др. Содержатся в клетках зрелых плодов, лепестков, осенних листьев, редко — корнеплодов. Хромопласты считаются конечной стадией развития пластид.

Функция хромопластов: окрашивание цветов и плодов и тем самым привлечение опылителей и распространителей семян.

Все виды пластид могут образовываться из пропластид. Пропластиды — мелкие органоиды, содержащиеся в меристематических тканях. Поскольку пластиды имеют общее происхождение, между ними возможны взаимопревращения. Лейкопласты могут превращаться в хлоропласты (позеленение клубней картофеля на свету), хлоропласты — в хромопласты (пожелтение листьев и покраснение плодов). Превращение хромопластов в лейкопласты или хлоропласты считается невозможным.

Рибосомы

1 — большая субъединица; 2 — малая субъединица.

Рибосомы — немембранные органоиды, диаметр примерно 20 нм. Рибосомы состоят из двух субъединиц — большой и малой, на которые могут диссоциировать. Химический состав рибосом — белки и рРНК. Молекулы рРНК составляют 50-63% массы рибосомы и образуют ее структурный каркас. Различают два типа рибосом: 1) эукариотические (с константами седиментации целой рибосомы — 80S, малой субъединицы — 40S, большой — 60S) и 2) прокариотические (соответственно 70S, 30S, 50S).

В составе рибосом эукариотического типа 4 молекулы рРНК и около 100 молекул белка, прокариотического типа — 3 молекулы рРНК и около 55 молекул белка. Во время биосинтеза белка рибосомы могут «работать» поодиночке или объединяться в комплексы — полирибосомы (полисомы) . В таких комплексах они связаны друг с другом одной молекулой иРНК. Прокариотические клетки имеют рибосомы только 70S-типа. Эукариотические клетки имеют рибосомы как 80S-типа (шероховатые мембраны ЭПС, цитоплазма), так и 70S-типа (митохондрии, хлоропласты).

Субъединицы рибосомы эукариот образуются в ядрышке. Объединение субъединиц в целую рибосому происходит в цитоплазме, как правило, во время биосинтеза белка.

Функция рибосом: сборка полипептидной цепочки (синтез белка).

Цитоскелет

Цитоскелет образован микротрубочками и микрофиламентами. Микротрубочки — цилиндрические неразветвленные структуры. Длина микротрубочек колеблется от 100 мкм до 1 мм, диаметр составляет примерно 24 нм, толщина стенки — 5 нм. Основной химический компонент — белок тубулин. Микротрубочки разрушаются под воздействием колхицина. Микрофиламенты — нити диаметром 5-7 нм, состоят из белка актина. Микротрубочки и микрофиламенты образуют в цитоплазме сложные переплетения. Функции цитоскелета: 1) определение формы клетки, 2) опора для органоидов, 3) образование веретена деления, 4) участие в движениях клетки, 5) организация тока цитоплазмы.

Включает в себя две центриоли и центросферу. Центриоль представляет собой цилиндр, стенка которого образована девятью группами из трех слившихся микротрубочек (9 триплетов), соединенных между собой через определенные интервалы поперечными сшивками. Центриоли объединены в пары, где они расположены под прямым углом друг к другу. Перед делением клетки центриоли расходятся к противоположным полюсам, и возле каждой из них возникает дочерняя центриоль. Они формируют веретено деления, способствующее равномерному распределению генетического материала между дочерними клетками. В клетках высших растений (голосеменные, покрытосеменные) клеточный центр центриолей не имеет. Центриоли относятся к самовоспроизводящимся органоидам цитоплазмы, они возникают в результате дупликации уже имеющихся центриолей. Функции: 1) обеспечение расхождения хромосом к полюсам клетки во время митоза или мейоза, 2) центр организации цитоскелета.

Органоиды движения

Присутствуют не во всех клетках. К органоидам движения относятся реснички (инфузории, эпителий дыхательных путей), жгутики (жгутиконосцы, сперматозоиды), ложноножки (корненожки, лейкоциты), миофибриллы (мышечные клетки) и др.

Жгутики и реснички — органоиды нитевидной формы, представляют собой аксонему, ограниченную мембраной. Аксонема — цилиндрическая структура; стенка цилиндра образована девятью парами микротрубочек, в его центре находятся две одиночные микротрубочки. В основании аксонемы находятся базальные тельца, представленные двумя взаимно перпендикулярными центриолями (каждое базальное тельце состоит из девяти триплетов микротрубочек, в его центре микротрубочек нет). Длина жгутика достигает 150 мкм, реснички в несколько раз короче.

Миофибриллы состоят из актиновых и миозиновых миофиламентов, обеспечивающих сокращение мышечных клеток.

    Перейти к лекции №6 «Эукариотическая клетка: цитоплазма, клеточная оболочка, строение и функции клеточных мембран»

Аппарат Гольджи, он же комплекс Гольджи, представляет собой один из важнейших компонентов в строении клетки. Эта клеточная , названая в честь итальянского биолога Камилло Гольджи, который ее открыл в 1898 году, она имеет вид комплекса полостей, ограниченных одиночными мембранами. По сути, аппарат Гольджи это мембранная структура эукариотической клетки.

Строение аппарата Гольджи

Если мы посмотрим на аппарат Гольджи в электронный , то увидим него нечто напоминающее стопку наложенных друг на друга мешочков, около которых находится множество пузырьков. В середине каждого подобного мешка находится узкий канал, который расширяется на концах в так званые цистерны. От них в свою очередь отпочковываются пузырьки. Вокруг центральной стопки образуется система связанных между собой трубочек.

Внешняя сторона аппарат Гольджи имеет немного выпуклую форму, там наши стопки образуют новые цистерны путем слияния пузырьков отпочковывающихся от гладкой эндоплазматической сети. С внутренней стороны аппарата цистерны завершают свое созревание и также распадаются вновь на пузырьки. Подобным образом происходит перемещение цистерн (мешочков, стопок) от наружной стороны органеллы к внутренней.

Также часть комплекса Гольджи, которая располагается ближе к ядру клетки, называется «цис», а часть, которая находится ближе к мембране, называется «транс».

Так выглядит аппарат Гольджи на рисунке.

Функции комплекса Гольджи

Роль аппарата Гольджи в жизни клетки разнообразна, в основном она сводится к модификации и перераспределению синтезирующих веществ и также их выведению за пределы клетки, образованию лизосом и построению .

Весьма высока активность аппарата Гольджи в секреторных клетках. Белки, которые поступающие из эндоплазматической сети концентрируются в аппарате Гольджи, затем в пузырьках Гольджи переносятся к мембране.

В клетках растений при формировании клеточной стенки именно Гольджи секретирует углеводы, которые служат матриксом для нее. При помощи микротрубочек отпочковавшиеся пузырьки Гольджи перемещаются и их мембраны сливаются с цитоплазматической мембраной, а содержимое включается в клеточную стенку.

Комплекс Гольджи бокаловидных клеток (они находятся в толще эпителия слизистой оболочки кишечника и дыхательных путей) секретирует гликопротеин муцин, он образует слизь.

А в клетках кишечника именно аппарат Гольджи выполняет важную функцию по перемещению липидов. Происходит это таким образом: жирные кислоты и глицерол попадают в клетки, затем в эндоплазматической сети происходит синтез своих липидов, большая часть их которых покрывается белками и при помощи Гольджи транспортируется к клеточной мембране, пройдя через которую липиды окажутся в лимфе.

Также благодаря аппарату Гольджи происходит формирование лизосом, на которых более детально остановимся в будущей статье.

Аппарат Гольджи (видео)

И в завершение образовательное видео по теме нашей статьи.

Данная часть живой клетки была названа фамилией знаменитого ученого из Италии, который занимался исследованием и открытием . Комплекс может быть различных форм, включает в себя несколько полостей, находящихся в мембранах. Основная его цель – образовать лизосомы и синтезировать различные вещества, направлять их к эндоплазматической сети.

Структура аппарата

Эта часть клетки имеет второе название комплекс Гольджи, который представляет собой органеллы эукариотов одномембранного типа. Данный комплекс отвечает за функционирование и создание новых лизосом в клетке, а также за и сохранность многих жизнедеятельных веществ, которые выходят из клеток человека или животного.

По своему строению или конструкции аппарат Гольджи напоминает небольшие мешочки, в медицине их еще называют цистерны, которые состоят из различных по форме пузырьков и целой системы клеточных трубок. Мешочки аппарата считаются полярными, так как с одного полюса находятся пузырьки со специальным веществом, которые раскрываются в зоне формирования (ЭПС), а с другой части полюса образуются пузырьки, отделяющиеся в созревающей зоне. Клеточный комплекс Гольджи локализуется возле самого ядра, а затем распределяется по всем эукариотам. При этом структура и строение аппарата различна, все зависит от организма, в котором он находится.

Например, если говорить о растительных клетках, то в них выделяется диктиосомы – это структурные единицы. Оболочки данного аппарата создаются гранулярной ЭПС, которая к ней прилегает. В период разделения клетки комплекс распадается на единичные структуры, они в хаотичном порядке разносятся и переходят в дочерние клетки.

Характеристики

Основными свойствами аппарата являются:


Читайте также:

Пиво для роста волос: самые результативные средства

Какие функции выполняет комплекс?

Роли данного комплекса интересны и по-своему многообразны. К таким функциям биологи относят следующее:

  • секреторные составляющие сортируются и накапливаются до необходимого количества, после чего аппарат их выводит
  • образование новых лизосом
  • скопление липидных молекул и развитие липопротеидов
  • посттрансляционная модификация различных белков, необходимых для функционирования клетки
  • синтезирование полисахаридов для развития камеди, гликопротеинов, слизи, восков и матриксного вещества, отвечающего за структуру стеночных клеток растения, животного или человека
  • принимает активное участие в образовании акросом
  • отвечает за формирование простейших сократимых вакуолей
  • после того, как происходит деление ядра, образуется клеточная пластина

Это описание не всех функций, за которые отвечает комплекс Гольджи. До сих пор при длительных исследованиях обнаруживаются новые достоинства и не столь значимые функции комплекса Гольджи, на сегодняшний день тщательно изучаются транспортная функция аппарата и синтезирование белка.

Что собой представляют лизосомы, их функция?

Так как аппарат Гольджи – первоисточник для формирования лизосом, то следует обратить внимание, что такое лизосомы и как они функционируют.

Лизосомы – это очень мелкие элементы клеток, диаметр которых составляет приблизительно один микрометр. Лизосома на поверхности имеет три слоя мембраны, внутри которой находится множество различных ферментов. Эти ферменты в организме отвечают за расщепление жизненно важных элементов. Каждая отдельная клетка содержит в себе до десяти лизосом, а новые уже формируются благодаря аппарату Гольджи.

Чтобы изучить развитие клетки, для начала следует идентифицировать лизосомы и проверить их реакцию на фосфатаз.

Функция лизосом:

  1. Аутофагия – это процесс, благодаря которому медленно расщепляются целые клетки, их некоторые составляющие и их подтипы. Сюда относятся: поджелудочная железа, особенно на момент подросткового возраста, лизис печенки в период отравления .
  2. Выделительная система. Лизосомы отвечают за удаление непереваренной пищи из клетки.
  3. Со стороны желудочно-кишечного тракта. Лизосомы и эндосомы сочетаются с пузырями фагоцитарного типа и благодаря этому формируют пищеварительную вакуоль, вследствие чего происходит внутриклеточное пищеварение.
  4. Нельзя не упомянуть о гетерофазии. Она отвечает за , вирусов и других органических веществ, которые самостоятельно попадают различными способами внутрь клетки.