Санитарно-гигиенические показатели качества воды. Показатели качества воды и их определение — биострой-аква - теплоизоляция, производство, монтаж,очищение воды, пусконаладкаочистных сооружений


Относительное содержание кислорода в воде, выраженное в процентах его нормального содержания, называется степенью насыщения кислородом. Эта величина зависит от температуры воды, атмосферного

давления и солености. Вычисляется по формуле:

Где

M - степень насыщения воды кислородом, %;

а - концентрация кислорода, мг/дм 3 ;

Р - атмосферное давление в данной местности, Па;

N - нормальная концентрация кислорода при данной температуре, минерализации (солености) и общем давлении 101308 Па.

Щелочность (рН)

Под щелочностью природных или очищенных вод понимают способность некоторых их компонентов связывать эквивалентное количество сильных кислот. Щелочность обусловлена наличием в воде анионов слабых кислот (карбонатов, гидрокарбонатов, силикатов, боратов, сульфитов, гидросульфитов, сульфидов, гидросульфидов, анионов гуминовых кислот, фосфатов). Их сумма называетсяобщей щелочностью . Ввиду незначительной концентрации трех последних ионов общая щелочность воды обычно определяется только анионами угольной кислоты (карбонатная щелочность). Анионы, гидролизуясь, образуют гидроксид-ионы:

CO 3 2- + H 2 O Û HCO 3 - + OH - ;

HCO 3 - + H 2 O Û H 2 CO 3 + OH - .

Щелочность определяется количеством сильной кислоты, необходимой для нейтрализации 1 дм 3 воды. Щелочность большинства природных вод определяется только гидрокарбонатами кальция и магния,pH этих вод не превышает 8,3.

Определение щелочности полезно при дозировании химических веществ, необходимых на обработку вод для водоснабжения, а также при реагентной очистке некоторых сточных вод. Определение щелочности при избыточных концентрациях щелочноземельных металлов важно для установлении пригодности воды для ирригации. Вместе со значениями рН щелочность воды служит для расчета содержания карбонатов и баланса угольной кислоты в воде.

Водородный показатель (рН)

CO 2 + H 2 0 Û H + + HCO 3 - Û 2 H + + CO 3 2- .

Для удобства выражения содержания водородных ионов была введена величина, представляющая собой логарифм их концентрации, взятый с обратным знаком:

pH = -lg.

Для поверхностных вод, содержащих небольшие количества диоксида углерода, характерна щелочная реакция. ИзмененияpH тесно связаны с процессами фотосинтеза (при потребленииCO 2 водной

растительностью высвобождаются ионыОН -). Источником ионов водорода являются также гумусовые кислоты, присутствующие в почвах. Гидролиз солей тяжелых металлов играет роль в тех случаях, когда в воду попадают значительные количества сульфатов железа, алюминия, меди и других металлов:

Fe 2+ + 2H 2 O Þ Fe(OH) 2 + 2H + .

ЗначениеpH в речных водах обычно варьирует в пределах 6,5-8,5, в атмосферных осадках 4,6-6,1, в болотах 5,5-6,0, в морских водах 7,9-8,3. Концентрация ионов водорода подвержена сезонным колебаниям. Зимой величинаpH для большинства речных вод составляет 6,8-7,4, летом 7,4-8,2. ВеличинаpH природных вод определяется в некоторой степени геологией водосборного бассейна.

В соответствии с требованиями к составу и свойствам воды водоемов у пунктов питьевого водопользования, воды водных объектов в зонах рекреации, а также воды водоемов рыбохозяйственного назначения, величина pH не должна выходить за пределы интервала значений 6,5-8,5.

ВеличинаpH воды - один из важнейших показателей качества вод. Величина концентрации ионов водорода имеет большое значение для химических и биологических процессов, происходящих в природных водах. От величиныpH зависит развитие и жизнедеятельность водных растений, устойчивость различных форм миграции элементов, агрессивное действие воды на металлы и бетон. ВеличинаpH воды также влияет на процессы превращения различных форм биогенных элементов, изменяет токсичность загрязняющих веществ.

В водоеме можно выделить несколько этапов процесса его закисления. На первом этаперН практически не меняется (ионы бикарбоната успевают полностью нейтрализовать ионыН + ). Так продолжается до тех пор, пока общая щелочность в водоеме не упадет примерно в 10 раз до величины менее 0,1 моль/дм 3 .

На втором этапе закисления водоемарН воды обычно не поднимается выше 5,5 в течение всего года. О таких водоемах говорят как об умеренно кислых. На этом этапе закисления происходят значительные изменения в видовом составе живых организмов.

На третьем этапе закисления водоемарН стабилизируется на значенияхрН <5 (обычнорН 4,5), даже если атмосферные осадки имеют более высокие значениярН . Это связано с присутствием гумусовых веществ и соединений алюминия в водоеме и почвенном слое.

Природные воды в зависимости от рН рационально делить на семь групп (табл. 3.3).

ПРЯМОЙ ЦИКЛ РАЗЛОЖЕНИЯ АЗОТСОДЕРЖАЩИХ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

представлен неразложившимися веществами белковой природы, нередко животного происхождения, а также азотом, входящим в состав микроорганизмов, низких растений и неразложившихся остатков высших растений.

Вначале разложения образуется аммиак, затем под действием нитрифицирующих бактерий в присутствии достаточного количества кислорода аммиак окисляется до азотистой кислоты (NО 2 -) (нитриты) и далее ферменты другого микробного семейства окисляют азотистую кислоту в азотную (NО 3 -) (нитраты ).

При свежем загрязнении отбросами в воде вырастает содержание АММОНИЙНЫХ СОЛЕЙ , то есть ион аммония является 1. Индикатором недавнего загрязнения воды органическими веществами белковой природы. 2. Ион аммония может быть обнаружен в чистых водах, содержащих гумусовые вещества и в водах глубокого грунтового происхождения.

Обнаружение в воде НИТРИТОВ свидетельствует о недавнем загрязнении водоисточника органикой (содержание в воде нитритов должно быть не более 0,002 мг/л).

НИТРАТЫ - это конечный продукт окисления аммонийных соединений, наличие в воде при отсутствии ионов аммония и нитритов указывает на давнее загрязнение водоисточника. Содержание нитратов в воде шахтных колодцев должно быть 10 мг/л в питьевой воде централизованного водоснабжения до 45 мг/л).

Обнаружение в воде одновременного присутствия солей аммонийных, нитритов и нитратов свидетельствует о постоянном и длительном органическом загрязнении воды.

ХЛОРИДЫ - имеют исключительно широкое распространение в природе и встречаются во всех природных водах. Большое их количество в воде делает ее непригодной для питья из-за соленого вкуса. Кроме того, хлориды могут служить показателем возможного загрязнения водоисточника сточными водами, поэтому хлориды как санитарно-показательные вещества могут иметь значение в том случае, если анализы на их содержание проводятся неоднократно, на протяжении более или менее длительного времени. (ГОСТ "Вода питьевая не >> 350 мг/л).

СУЛЬФАТЫ - также являются важными показателями органического загрязнения воды, так как они всегда содержатся в хозяйственно бытовых сточных водах. (ГОСТ "Вода питьевая" не >> 500 мг/л).

ОКИСЛЯЕМОСТЬ - это количество кислорода в мг, расходуемого на окисление органических веществ, содержащихся в 1 литре воды.

РАСТВОРЕННЫЙ КИСЛОРОД

Подземные воды вследствие отсутствия соприкосновения с воздухом очень часто не содержат кислород. Степень насыщения поверхностных вод сильно колеблется. Вода считается чистой, если в ней содержится 90% кислорода от максимально возможного содержания при данной температуре, Средней чистоты - при 75-80%; Сомнительной - при 50-75%; Загрязненной - менее 50%.

Согласно "Правилам охраны поверхностных вод от загрязнений", содержание кислорода в воде в любой период года должно быть не менее 4 мг/л в пробе, отобранной до 12 часов дня.

Вследствие значительных колебаний абсолютного содержания кислорода в природных водах более ценным показателем является величина потребления кислорода в течение некоторого срока хранения воды при определенной температуре (БИОХИМИЧЕСКАЯ ПОТРЕБНОСТЬ В КИСЛОРОДЕ в течение 5 или 20 суток - БПК 5 - БПК 20).

Для его определения исследуемую воду путем энергичного встряхивания насыщают кислородом воздуха, определяют в ней исходное содержание кислорода и оставляют на 5 или 20 суток при температуре 20 0 С. После этого вновь определяют содержание кислорода. Чаще всего показатель БПК 5 используется для характеристики процессов самоочищения водоемов от загрязнения промышленными и хозяйственно-бытовыми сточными водами.

ОСНОВНЫЕ ИСТОЧНИКИ ЗАГРЯЗНЕНИЯ ВОДОЕМОВ, ПОСЛЕДСТВИЯ ЗАГРЯЗНЕНИЯ ВОДОЕМОВ

Основными источниками загрязнения водоемов являются:

1. промышленные и бытовые сточные воды (бытовые воды имеют высокую бактериальную и органическую загрязненность)

2. дренажные воды с орошаемых земель

3. сточные воды животноводческих комплексов (могут содержать патогенные бактерии и яйца гельминтов)

4. организованный (ливневая канализация) и неорганизованные поверхностный сток с территории населенных пунктов, с/х полей (использование различных химических препаратов - минеральных удобрений, пестицидов и т.д.)

5. молевой сплав леса;

6. водный транспорт (сточные воды 3-х видов: фекальные, хозяйственно-бытовые и воды, получаемые в машинных отделениях).

Кроме того, дополнительными источника заражения воды возбудителями кишечных инфекций могут стать: сточные воды больниц; массовые купания; стирка белья в небольшом водоеме.

Загрязнения, поступающие в водоемы:

1. нарушают нормальные условия жизнедеятельности биоценоза водоема;

2. способствуют изменению органолептических показателей воды (цветность, привкус, запах, прозрачность);

3. повышают бактериальную загрязненность водоемов. Употребление человеком воды, не подвергшейся методам очистки и обеззараживания, приводит к развитию: инфекционных заболеваний, а именно бактериальных, дизентерии, холеры, вирусных (вирусных гепатит), зоонозам (лептоспироз, туляремия), гельминтозам, а так же заражение человека простейшими (амеба, инфузория туфелька);

4. увеличивают количество химических веществ, превышение ПДК которых в питьевой воде способствует развитию хронических заболеваний (например, накопление в организме свинца, бериллия)

Поэтому к качеству питьевой воды предъявляют следующие гигиенические требования:

1. Вода должна быть эпидемиологически безопасной в отношении острых инфекционных заболеваний;

2. должна быть безвредной по химическому составу;

3. вода должна иметь благоприятные органолептические показатели должна быть приятной на вкус, не должна вызывать эстетическое неприятие.

Для снижения заболеваемости человека, связанной с водным фактором передачи необходимо:

выполнение природоохранного комплекса мероприятий (предприятия источники загрязнений) и контроль над его выполнением (контролирующие органы министерства природного хозяйства, ФС «Роспотребнадзор»);

применение методов улучшения качества питьевой воды (водоканал);

Нитриты указывают на некоторую давность загрязнения (время, необходимее для превращения аммиака в нитриты). Нитраты свидетельствуют о более давних сроках загрязнения. По азотсодержащим веществам можно судить о характере загрязнений водоисточников. Если в воде обнаружен аммиак, а при повторных анализах он отсутствует, то можно говорить о случайном загрязнении. Наличие в воде аммиака и нитритов свидетельствует о том, что вода ранее не загрязнялась, но сравнительно недавно появился постоянно действующий источник загрязнения. Обнаружение аммиака, нитритов и нитратов свидетельствует о явном неблагополучии водоисточника, подвергающегося постоянному загрязнению. Если в воде обнаруживаются нитраты, но нет аммиака, это указывает на то, что ранее существовал постоянно действующий источник загрязнения, а в настоящее время загрязнение источника не происходит. Наличие в воде аммиака и нитратов при отсутствии промежуточного продукта - нитритов, говорит о том, что водоисточник загрязняется периодически. Обнаружение нитратов говорит об окончании процессов минерализации.

Азотсодержащие вещества могут быть и минерального происхождения. Это следует особо учитывать при исследовании артезианских вод, В таких случаях необходимо обращать внимание на наличие других показателей загрязнения, особенно на бактериологические показатели и величины окисляемости. Последняя будет высокой без нагревания воды, что также свидетельствует о минеральном происхождении данного показателя.

Однако высокая окисляемость при кипячении воды говорит о наличии в ней органических загрязнений.

Определение азота аммиака (аммонийных солей) (качественное с приближенной количественной оценкой)

Азот аммонийных солей в питьевой воде качественно и количественно определяют с помощью реактива Несслера, который дает желтое окрашивание в присутствии солевого аммиака.

В пробирку налить 1/3 исследуемой воды, прибавить 2-3 капли раствора сегнетовой соли для удержания солей Ca и Mg и 5 капель реактива Несслера. Через 10 мин определяют содержание аммонийного азота.



Определение азота нитритов

Принцип метода основан на образовании ярко окрашенных азокрасок при взаимодействии нитритов в кислой среде с реактивом Грисса. Наливают 1/2 пробирки испытуемой воды, прибавляет 10 капель реактива Грисса и нагревают на водяной бане 5 мин. Приближенное содержание определяют по таблице 2.

Определение азота нитратов

Принцип метода основан на переводе салициловой кислоты растворенного в воде азота нитратов в нитропроизводные фенола, образующие со щелочью соединения, окрашенные в желтый цвет.

Качественная реакция: в пробирку налить 1/3 исследуемой воды, прибавить 2 капли 8% раствора поваренной соли, добавить 4-5 кристаллов дифениламина, взболтать. По стенке пробирки осторожно прилить 10 капель концентрированной серной кислоты.

Наличие азота нитратов в воде дает образование синего кольца.

Определение окисляемости воды.

Под окисляемостью воды понимается потребность в кислороде, необходимая для окисления продуктов распада органических веществ растительного и животного происхождения, содержащихся в воде. Окисляемость выражается количеством мг кислорода, расходуемого на окисление веществ в 1 литре воды



Высокая окисляемость воды обусловлена наличием в ней продуктов распада органических веществ растительного и животного происхождения. В чистых питьевых водах окисляемость не превышает 2-4 мг кислорода на 1 л воды. В болотных водах при отсутствии азотсодержащих веществ допускается окисляемость до 5-6 мг/л, т.к. в подобной воде органические вещества содержат гумус (растительное коллоидное вещество), являющейся питательной средой для микроорганизмов.

Определение окисляемости воды проводится титрованным раствором марганцовокислого калия в кислой среде. Принцип этого метода основан на способности марганцовокислого калия в кислой среде в присутствии органических веществ выделять атомарный кислород, идущий на их окисление. Раствор марганцовокислого калия при этом обесцвечивается вследствие превращения KMnO4 в MnSO4. По количеству разложившегося KMnO4 вычисляют окисляемость.

Реактивы:

0,01 н раствор KMnO4, 1 мл которого выделяет 0,08 мг кислорода;

0,01 н раствор щавелевой кислоты (1 мл которого идет на окисление 0,08 мг кислорода);

25% р-р серной кислоты.

Для суждения об эпидемиологической опасности воды используются бактериологические и химические показатели загрязнения.

Бактериологические показатели загрязнения воды. С эпидемиологической точки зрения при оценке воды имеют значение преимущественно патогенные микроорганизмы. Однако даже при современных достижениях микробиологической техники исследование воды на присутствие в ней патогенных микроорганизмов, а тем более вирусов является довольна трудоемким процессом. Поэтому оно не проводится при массовых анализах воды и осуществляется лишь при наличии эпидемиологических показаний, например при вспышках инфекционных заболеваний, в которых подозревается водный путь передачи.

В оценке качества воды в санитарной практике широко используются косвенные бактериологические показатели загрязнения воды. При этом считается, что чем менее вода загрязнена сапрофитами, тем менее опасна она в эпидемиологическом отношении.

Одним из показателей загрязнения воды сапрофитной микрофлорой является так называемое микробное число.

Микробное число - это количество колоний, вырастающих при посеве 1 мл воды на мясо-пептонный агар после 24 часов выращивания при температуре 37°.

Микробное число характеризует общую бактериальную обсемененность воды. При оценке качества воды по этому показателю пользуются данными наблюдений о том, что в воде незагрязненных и хорошо оборудованных артезианских скважин микробное число не превышает 10-30 в 1 мл, в воде незагрязненных шахтных колодцев - 300-400 в 1 мл, в воде сравнительно чистых открытых водоемов - 1000-1500 в 1 мл. При эффективной очистке и обеззараживании воды на водопроводе число не превышает 100 в 1 мл.

Еще большее значение имеет определение наличия в воде кишечной палочки, которая выделяется с испражнениями человека и животных. Поэтому присутствие в воде кишечной палочки сигнализирует о фекальном загрязнении и, следовательно, о возможном заражении воды патогенными микроорганизмами кишечной группы (брюшной тиф, паратиф, дизентерия и пр.).

Исследование воды на содержание кишечной палочки позволяет предвидеть возможность заражения воды патогенной микрофлорой в будущем и, следовательно, создает возможность путем своевременного проведения необходимых мероприятий предотвратить его.

Степень обсеменения воды кишечной палочкой выражается величиной коли-титра или коли-индекса.

Коли-титр представляет собой то наименьшее количество исследуемой воды, в котором при соответствующей методике обнаруживается (выращивается) кишечная палочка. Чем меньше (ниже) коли-титр, тем значительнее фекальное загрязнение воды.

Коли-индекс - количество кишечных палочек в 1 л воды.

В чистой воде артезианских скважин коли-титр обычно выше 500 (коли-индекс меньше 2), в незагрязненных и хорошо оборудованных колодцах коли-титр не ниже 100 (коли-индекс не более 10).

Ряд экспериментальных исследований показал, что кишечная палочка более устойчива к дезинфицирующим агентам, чем возбудители кишечных инфекций, туляремии, лептоспироза и бруцеллеза, и поэтому может служить не только показателем загрязнения воды, но и индикатором надежности ее обеззараживания, например на водопроводе.

Если после обеззараживания воды титр кишечной палочки поднимается до 300 (коли-индекс не более 3), то такую воду можно считать безопасной в отношении главнейших возбудителей заболеваний, распространяющихся водным путем.

Химические показатели загрязнения воды. К химическим показателям загрязнения воды относят органические вещества и продукты их распада: аммонийные соли, нитриты и нитраты. Кроме нитратов, названные соединения сами по себе в тех количествах, в которых они обычно встречаются в природных водах, не оказывают влияния на здоровье человека. Наличие их лишь может свидетельствовать о загрязнении почвы, через которую протекает вода, питающая водоисточник, и о том, что наряду с этими веществами в воду могли попасть патогенные микроорганизмы.

В отдельных случаях каждый из химических показателей может иметь другую природу, например органические вещества - растительное происхождение. Поэтому признать водоисточник загрязненным можно лишь при наличии следующих условий: 1) в воде присутствует не один, а несколько химических показателей загрязненности; 2) в воде одновременно обнаружены бактериальные показатели загрязненности, например кишечная палочка; 3) возможность загрязнения подтверждается санитарным обследованием водоисточника.

Показателем наличия органических веществ в воде служит окисляемость, выражаемая в миллиграммах кислорода, расходуемого на окисление органических веществ, содержащихся в 1 л воды. Наименьшую окисляемость имеют артезианские воды - до 2 мг 02 на 1 л, в водах шахтных колодцев окисляемость достигает 3-4 мг 02 на 1 л, причем с увеличением цветности воды она возрастает. В воде открытых водоемов окисляемость может быть еще выше.

Повышение окисляемости воды сверх названных величин указывает на возможное загрязнение водоисточника.

Основным источником появления аммонийного азота и нитритов в природных водах является разложение белковых остатков, трупов животных, мочи, фекалий.

При свежем загрязнении отбросами в воде возрастает содержание аммонийных солей (превышает 0,1 мг/л). Являясь продуктом дальнейшего химического окисления аммонийных солей, нитриты в количестве превышающем 0,002 мг/л, также служат важным показателем загрязненности водоисточника. Необходимо учитывать, что в глубоких подземных водах возможно образование нитритов и аммонийных солей из нитратов при восстановительных процессах. Нитраты представляют собой конечный продукт окисления аммонийных солей. Наличие их в воде при отсутствии аммиака и нитритов указывает на сравнительно давнее попадание в воду азотсодержащих веществ, которые успели уже минерализоваться.

Некоторым показателем загрязненности водоисточника служат хлориды, поскольку они содержатся в моче и различных отбросах, но при этом необходимо учитывать, что присутствие больших количеств хлоридов в воде (больше 30-50 мг/л) может быть обусловлено и вымыванием хлористых солей из засолоненных почв.

Для правильной оценки происхождения хлоридов нужно учитывать oхарактер водоисточника, наличие хлоридов в воде соседних однотипных водоисточников, а также присутствие других показателей загрязнения воды.

Одним из основных методов решения вопросов, связанных с рациональным использованием подземных вод, является применение компьютерных информационных систем, которые позволяют оценить качество природных вод, используемых в различных целях, наличие месторождений минеральных и питьевых вод и выдать рекомендации по их рациональному использованию. Такие системы необходимы административным и планирующим организациям, предпринимателям и водопользователям, природоохранным органам, исследователям, занимающимся проблемами гидрологии, гидрогеологии, экологии, медицинской географии, рационального использования ресурсов.

Данные информационные (экспертные) системы представляют собой программы управления базами данных, которые, помимо представления информации, позволяют проводить численное прогнозное моделирование (вычислительный эксперимент) на основе введенных в компьютер данных о том или ином варианте водопользования. Однако для достоверного решения задач управления водными ресурсами на практике требуется системный подход, учитывающий все необходимые стороны изучаемого процесса. В настоящее время внедрение системного анализа на основе математического моделирования в практику принятия решений часто сдерживается не отсутствием математических методов и соответствующего компьютерного обеспечения, а недостаточной информированностью лиц, принимающих подобное решение.

Преодоление подобных трудностей и является основной задачей при внедрении экспертных компьютерных систем, позволяющих оперативно решать часто встречающиеся задачи по управлению природными водными ресурсами, такие, как:

1) извлечение (добыча) воды из водоносного горизонта;

2) естественное и искусственное пополнение запасов подземных вод;

3) химический состав и загрязнение подземных вод;

4) совместное управление запасами подземных и поверхностных вод;

5) влияние подземных вод на инженерные сооружения;

6) различные комбинации перечисленных проблем.

Таким образом, учитываются как количественная (объем водоотбора), так и качественная (распространение загрязнений) стороны водопользования.

Кроме того, информационные системы предоставляют возможность получить статистическую информацию о состоянии природных вод, эксплуатационных запасах, имеющихся загрязнениях, экологическом качестве природных вод, произвести оценку защищенности подземных вод.

Зная потребность в воде по районам и отраслям, можно дифференцировать ее потребление по качеству: на технические и производственные нужды забирать воду худшего качества, хорошую же воду использовать только для питьевого водоснабжения. Но административным указом и штрафами, как показывает опыт, потребителя не заставить регламентировать водоотбор. Одним из наиболее эффективных инструментов регулирования интенсивности антропогенного воздействия на подземные воды является экономическое стимулирование рационального водоотбора и экологически безопасного размещения производства.

Известно, что население закономерно реагирует на изменение цен на воду. Поэтому отдельной и весьма актуальной задачей является установление оптимальных размеров водопользовательских платежей. Стоимость природных вод должна способствовать внедрению оптимальной схемы водопользования в регионе. Необходимо также анализировать альтернативные пути использования ресурсов подземных вод в качестве лечебных, промышленных, мелиоративных.

Рациональное использование подземных вод не только уменьшит отрицательное воздействие на подземную гидросферу, но и даст необходимые средства для проведения различных природоохранных мероприятий.

Санитарно-гигиенические требования к качеству питьевой воды

Основными регламентирующими документами для питьевой воды в России являются ГОСТ 2874-82 «Вода питьевая. Гигиенические требования и контроль за качеством» и ГОСТ 13273-88 «Воды минеральные питьевые лечебные и лечебно-столовые».

ГОСТ 2874-82 распространяется на воду при централизованном использовании местных источников с разводящей сетью труб.

ГОСТ 13273-88 распространяется на минеральные питьевые лечебные и лечебно-столовые воды, которые имеют минерализацию не менее 1 г/л или содержат биологически активные микроэлементы в количестве не ниже бальнеологических норм. Предельно допустимые концентрации большинства элементов и соединений приводятся в ряде нормативных документов, основным из которых являются «Санитарные нормы и предельно допустимые содержания вредных веществ в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования (СНиП)», утвержденные Министерством здравоохранения СССР в 1988 г.

Международные нормы качества питьевой воды разрабатываются Всемирной организацией здравоохранения (ВОЗ).

Данные величины служат основой при разработке национальных стандартов, которые при правильном применении должны обеспечивать безопасность питьевого водоснабжения. Во всех странах разрабатываются стандарты качества воды, наиболее близкие к рекомендуемым величинам.

Принятые в России нормы качества питьевой воды очень близки к международным.

Качество питьевой воды должно соответствовать требованиям ГОСТа 2874-82 «Вода питьевая. Гигиенические требования и контроль качества», обеспечиваться на протяжении всей водопроводной сети и не зависеть от вида источника водоснабжения и системы обработки воды.

Действующим ГОСТом 2874-82 предусмотрен контроль органолептических (запаха, привкуса, цветности, мутности), физико-химических (pH, температуры) и бактериологических показателей качества питьевой воды, содержания ряда химических веществ, встречающихся в природных водах или добавляемых к воде в процессе ее обработки, влияющих на органолептические или биологические свойства воды.

Кроме этого, стандартом в ряде случаев предусмотрен контроль содержания химических веществ, нормативные требования к которым приведены в СанПиН 4630-88 «Санитарные требования и нормативы охраны поверхностных вод от загрязнения сточными водами».

Требования ГОСТа, обеспечивающие безопасность питьевой воды в эпидемическом отношении, основываются на косвенных показателях – количестве сапрофитов в 1 мл воды (< 100) и индексе бактерий группы кишечной палочки 1 л воды (< 3).

Требования ГОСТа к химическому составу воды включают 20 показателей для веществ, встречающихся в природных водах или добавляемых в нее при обработке на очистных сооружениях.

Государственный стандарт регламентирует требования к качеству питьевой воды, подаваемой централизованными системами хозяйственно-питьевого водоснабжения, т. е. системами, имеющими разводящую сеть труб.

В настоящее время количество существующих гигиенических нормативов для наиболее опасных и наиболее часто встречающихся в воде химических соединений составляет более 1500. В связи с этим проблема научного обоснования и совершенствования системы требований к качеству питьевой воды с позиций безопасности для здоровья становится чрезвычайно актуальной. Одними из наиболее сложных и важных вопросов в системе обеспечения и контроля качества питьевой воды являются количество и состав контролируемых показателей, определяющие в совокупности интегральную качественную оценку воды, ее безопасность и безвредность для человека.

В таблице 29 приведены показатели качества воды по ГОСТу 2874-82, Руководству по контролю качества питьевой воды ВОЗ (1994) и СНиП. Представлены только некоторые показатели качества воды, упоминаемые в ГОСТе 2874-82, СНиПе или Руководстве по контролю качества питьевой воды ВОЗ (1994). Всего в России нормативными документами установлены ПДК для более чем 1500 различных элементов и соединений.

Таблица 29

Показатели качества воды



Данные по предельно допустимым концентрациям различных компонентов в воде приводятся в различных справочных изданиях. Сведения о физико-химических свойствах, получении и применении, а также ПДК для элементов I–VIII групп, углеводородов и их галогенопроизводных и радиоактивных элементов приведены в четырехтомнике «Вредные химические вещества» Химическая классификация и некоторые физические и химико-аналитические свойства около 1000 нормируемых в водах органических соединений представлены в справочнике «Основные свойства нормируемых в водах органических соединений». Там же даны структурные формулы этих соединений, их ПДК, лимитирующие признаки вредности (необходимы при выборе наиболее опасных веществ для контроля и учитываются при одновременном содержании вредных веществ), молекулярные массы, агрегатное состояние, некоторые физические константы, растворимость, устойчивость, область применения.

В настоящее время является актуальным совершенствование системы контроля качества питьевой воды (приоритетность методов анализа, периодичность исследований, методика отбора проб воды и др.). Самостоятельной задачей является уточнение величин гигиенических стандартов по ряду показателей, таких как цветность, содержание хлоридов, сульфатов, алюминия, свинца, селена, по которым имеются расхождения между ГОСТом и Рекомендациями ВОЗ. Также необходима разработка отдельного Государственного стандарта на качество питьевой опресненной воды, так как опреснение соленых и солоноватых вод является очень важной гигиенической проблемой.

Показатели питьевой воды

Показатели наличия в воде органических веществ

Около 1/3 населения России продолжает использовать в питьевых целях воду из колодцев, родников, открытых водоемов.

Показатели загрязненности воды.

1. Наличие в воде органических веществ.

Количество растворенного кислорода зависит от температуры воды. Чем ниже температура, тем больше растворенного кислорода в воде. Кроме того, содержание кислорода зависит от наличия в воде зоо– и фитопланктона. Если в воде много водорослей или много животных, то содержание кислорода меньше, так как часть кислорода расходуется на жизнедеятельность зоо– и фитопланктона. Содержание кислорода также зависит от поверхности водоема: в открытых водоемах кислорода больше. Содержание кислорода при всех прочих условиях будет зависеть от барометрического давления и от загрязнения. Чем больше загрязнение, тем меньше кислорода содержится в воде, потому что кислород буде расходоваться на окисление загрязнения (органических веществ). Для того чтобы судить о том, достаточно или недостаточно кислорода в водоеме, существуют таблицы Виндлера, где приводятся данные о пределе растворимости кислорода при данной температуре.

Если мы определяем количество растворенного кислорода в нашей пробе воды и находим, что при 7 °C у нас в пробе содержится 9 мг кислорода, то эти цифры ничего не дают. Мы должны посмотреть в таблицу Виндлера: при 7 °C должно быть растворено 11 мг кислорода на литр, и это говорит о том, что по всей видимости в воде содержится большое количество органических веществ.

2. Показатель биохимического потребления кислорода (БПК).

БПК – это количество кислорода, которое необходимо для окисления легкоокисляемых органических веществ, находящихся в 1 л воды. Условия для проведения этого анализа: экспозиция 1 сутки, 5 суток, 20 суток. Методика: требуется время и темное место: берутся две банки, заполняются исследуемой водой. В первой банке определяется содержание кислорода тотчас, а вторую банку ставят либо на сутки, либо на 5, либо на 20 в темное помещение и определяют содержание кислорода. Чем больше содержится органических веществ в пробе воды, тем меньше кислорода будет обнаружено, потому что часть растворенного кислорода израсходуется на окисление органических веществ (легкоокисляемых).

3. Окисляемость воды.

Окисляемость воды – это количество кислорода, которое необходимо для окисления легко– и среднеокисляемых органических веществ, находящихся в 1 л воды. Условия: окислитель – перманганат калия, 10-минутное кипячение. Не всегда высокая цифра окисляемости свидетельствует о неблагополучии водоисточника. Высокая цифра окисляемости может быть за счет растительной органики. Высокая цифра окисляемости может быть обусловлена наличием в воде неорганических веществ – сильных восстановителей, что характерно для подземных вод. Сюда относятся сульфиды, сульфиты, соли закиси железа, нитриты. Высокая цифра окисляемости может быть обусловлена наличием в воде органики животного происхождения, и только в этом случае мы говорим о том, что водоем загрязнен. Разумеется возникает вопрос, как же нам решить, за счет чего у нас наблюдается высокая цифра окисляемости. Для ответа на этот вопрос существуют следующие приемы: для того чтобы дифференцировать окисляемость за счет органических веществ от окисляемости за счет неорганических веществ, нужно поставить пробу на холоде: на холоде окисляются неорганические вещества (минеральные). Допустим у нас окисляемость была 8 мг/л, поставили пробу на холоде, выяснили, что окисляемость на холоде составляет 1 мг/л. Получается, что за счет органических веществ приходится 7 мг/л. Теперь мы должны отдифференцировать органику растительного происхождения от животного. В этом случае нужно посмотреть на бактериологические показатели. ГОСТом окисляемость не нормируется, так как она может быть высокой и в нормальной, и загрязненной воде. Однако существуют ориентировочные нормы. Ориентировочные нормы следующие: для поверхностных водоемов – 6–8 мг/л. Для подземных водоисточников, для шахтных колодцев – 4 мг/л, для артезианских вод – 1–2 мг/л.

4. Химическая потребность в кислороде (ХПК).

ХПК – также показатель наличия в воде органических веществ – химическая потребность в кислороде. Это количество кислорода, которое необходимо для окисления легко-, средне– и трудноокисляемых органических веществ, находящихся в 1 л воды. Условия проведения анализа: двухромистый калий в качестве окислителя, концентрированная серная кислота, 2-часовое кипячение. В любой воде, если правильно проведен анализ, БПК будет всегда меньше, чем окисляемость, а окисляемость, всегда меньше ХПК. Определение ХПК, БПК и окисляемости имеет значение для прогнозирования системы очистки сточных вод. В хозяйственно-фекальных сточных водах основную массу составляют легкоокисляемые химические вещества, следовательно, для очистки надо применять биологический метод. В стоках с преобладанием средне– и трудноокисляемых веществ, следует применять химическую очистку.

5. Органический углерод.

Органический углерод – показатель на наличие в воде органических веществ. Чем больше обнаруживается органического углерода, тем больше органики в воде. Существуют ориентировочные нормы по органическому углероду. Считается, что, если он присутствует в пределах 1–10 мг/л, этот водоем чистый, более 100 мг/г – загрязненный.

6. CCE – карбохлороформэкстракт.

Этот показатель позволяет определить присутствие в воде трудноопределяемых веществ: нефтепродуктов, пестицидов, ПАВ. Все эти вещества адсорбируются на угле, а затем экстрагируются. Считается, что если CCE находится в пределах 0,15–0,16, то этот водоем чистый, 10 и более – водоем загрязнен.

7. Хлориды и сульфаты.

Хлориды дают соленый вкус, сульфаты – горький. Хлориды не должны превышать 350 мг/л, а сульфаты не более 500 мг/л. Чаще всего хлориды и сульфаты в воде имеют минеральное происхождение, что связано с почвенным составом, но в отдельных случаях хлориды и сульфаты могут быть показателями загрязнения, когда они поступают в водоемы как загрязнения со сточными водами бань и т. п. Если содержание этих веществ меняется в динамике, то, безусловно, есть загрязнение водоисточника.

8. Сухой остаток.

Если взять 1 л воды и выпарить, взвесить остаток, то получим вес сухого остатка. Чем больше вода минерализована, тем этот сухой остаток будет больше. По ГОСТу сухой остаток не должен превышать 1000 мг/л. Потери при прокаливании позволяют судить о количестве органики в остатке (так как органические вещества сгорают). Чем больше потерь при прокаливании, тем больше в воде содержится органических веществ. В чистой воде потери при прокаливании не должны превышать 1/3 сухого остатка, т. е. 333 мг.

Все эти показатели являются косвенными, так как они не позволяют сами определить те вещества, которые вызвали загрязнение. Более прямыми являются бактериологические показатели – индекс и титр бактерий группы кишечной палочки.

Нормативы водопотребления

Количество воды, необходимое для одного жителя в сутки, зависит от климато-географических условий, сезона года, числа жителей, культурного уровня населения и степени санитарного благоустройства зданий (обеспеченности внутренним водопроводом, канализацией, центральным отоплением). Последний фактор является определяющим. На его основе разработаны «Нормы водопотребления», которые введены в СНиПы. В указанные нормы входит расход воды в квартирах, предприятиями культурно-бытового, коммунального обслуживания и общественного питания.

В некоторых городах развитие водопровода позволяет обеспечить более высокие нормы водопотребления (Москва – 500 л в сутки, Санкт-Петербург – 400 л в сутки). Считается, что норма водопотребления 500 л в сутки является максимальной.

При расчете водопотребления необходимо учитывать неравномерность расхода воды как в отдельные часы суток, так и по сезонам года. Для этого средние нормы водопотребления принимаются с так называемыми коэффициентами неравномерности – часовым (отношение максимального часового расхода к среднечасовому) и суточным (отношение максимального суточного расхода к среднесуточному). Учет коэффициентов неравномерности при проектировании водопровода позволяет обеспечить бесперебойную подачу воды в час пик и в жаркие сезоны года, когда увеличивается расход воды.

Источники водоснабжения, их санитарно-гигиеническая характеристика

Источники водопользования. Хозяйственно-питьевое водоснабжение населения

Основные правила и нормы

1. Жители городов и других населенных пунктов должны обеспечиваться питьевой водой в количестве, достаточном для удовлетворения физиологических и хозяйственных потребностей человека.

2. Качество воды, используемой населением для питьевых, хозяйственных и производственных целей, должно соответствовать санитарным нормам.

3. Предприятия и организации обязаны осуществлять мероприятия, направленные на развитие систем централизованного водоснабжения, обеспечение населения доброкачественной питьевой водой.

Источники водопользования населения

Водоисточники – природные воды, используемые для хозяйственно-питьевого, технического или сельскохозяйственного водоснабжения.

Источниками водоснабжения могут быть открытые водоемы (реки, озера), которые имеют риск загрязнения поверхностными химическими загрязнениями. Родники, используемые населением в качестве источника воды, чаще всего не исследованы и имеют неустановленный химический состав.

Благодаря защищенности водоносных пластов артезианские воды обычно обладают хорошими органолептическими свойствами и характеризуются почти полным отсутствием бактерий. В определенной степени это зависит от удаленности водосборной поверхности, ее санитарного состояния. Очень важно знать, где и в каком месте находится источник.

Качество воды источников, используемых для централизованного и нецентрализованного водоснабжения, для купания, занятий спортом и отдыха населения, в лечебных целях, а также качество воды водоемов в черте населенных пунктов должно отвечать санитарным правилам. (Закон РФ от 19.04.1991 «О санитарно-эпидемиологическом благополучии населения»)

Существуют три основных источника водообеспечения систем водоснабжения:

1) подземные воды;

2) поверхностные воды;

3) атмосферные осадки.

Для систем центрального водоснабжения наибольший интерес представляют подземные и поверхностные воды.


Подземные воды

Подземные источники (грунтовые, межпластовые воды) образуются при фильтрации атмосферных осадков через почвенный слой и горные породы. Благодаря наличию водоупорных слоев подземные воды расслаиваются на отдельные, изолированные друг от друга водоносные горизонты.


Грунтовыми водами называются подземные воды, скапливающиеся на первом от поверхности водоупорном слое. В природных условиях грунтовые воды не загрязнены и пригодны для использования, если повышенное содержание солей не придает воде неприятного привкуса. При загрязнении почвы и поверхностном расположении санитарная надежность грунтовых вод резко снижается, так как создается реальная опасность их загрязнения органическими веществами животного происхождения и патогенными микроорганизмами, что может явиться причиной кишечных инфекций. Грунтовые воды имеют малый дебит (количество воды, даваемое источником в единицу времени) и широко используются лишь в местном колодезном водоснабжении.

Межпластовые воды залегают между двумя водоупорными слоями и защищены от загрязнения с поверхности. Когда межпластовые воды сосредоточены в зернистых породах и в процессе своего продвижения подвергаются фильтрации, их называют фильтрационными (или поровыми), если они текут в трещинах жестких пород, – флюационными (текущими). Напорные межпластовые воды называются артезианскими.

К подземным водоисточникам относятся также ключи (родники), представляющие собой естественный выход на поверхность грунтовых или межпластовых вод.

Глубокие межпластовые воды по качеству в большинстве случаев соответствуют требованиям ГОСТа и используются для хозяйственно-питьевых целей без предварительной обработки.

При нарушении водонепроницаемых перекрытий межпластовые водоносные горизонты могут загрязняться; в этом случае необходима обработка воды до подачи ее потребителю. В некоторых районах межпластовые воды чрезмерно минерализованы.

Подземные воды характеризуются обычно постоянством состава и температуры, значительной минерализацией, отсутствием минеральных взвесей, относительно невысоким содержанием органических веществ, присутствием растворенных газов, значительной жесткостью, повышенным содержанием железа и марганца, высокой санитарной надежностью (отсутствием бактерий и вирусов). Часто подземные воды имеют гидравлическую связь с поверхностными, что влечет за собой изменение их химического состава: повышается концентрация органических веществ, изменяется минерализация (насыщенность солями), появляется растворенный кислород. С возрастанием глубины залегания увеличивается степень минерализации воды.

Несмотря на малую минерализацию, которая составляет до 1,5 г/л, пресные подземные воды представляют собой сложную многокомпонентную систему, включающую целый комплекс неорганических и органических соединений, газов и живого вещества.


Неорганические вещества – макро– и микрокомпоненты.

В зависимости от концентрации неорганических веществ в подземных водах выделяют макрокомпоненты (десятки и сотни мг/л) и микрокомпоненты (менее 1 мг/л). Макрокомпоненты определяют химический тип воды и, как следствие, ее основные потребительские свойства. В первую очередь к ним следует отнести Ca 2+ , Mg 2+ , Na + , K + , CI - , SO 4 2- и HCO 3 - . Концентрации и возможность накопления в подземных водах макрокомпонентов определяются геолого-гидрогеологическими условиями данного района и во многом зависят от минерального состава водовмещающих пород. К микрокомпонентам можно отнести все другие элементы. В настоящее время в воде их обнаружено более 80. Большая часть из них содержится в воде в концентрациях менее 1 мкг/л.

В таблице 30 приведен порядок максимальных концентраций химических элементов, обнаруживаемых в пресных подземных водах.

Из приведенных данных видно, что не любая пресная подземная вода может использоваться для питьевого водоснабжения, так как содержание многих микрокомпонентов в естественных условиях может превышать установленные ПДК (предельно допустимые концентрации).

Отдельной группой среди неорганических веществ следует выделить радиоактивные элементы. Концентрации радиоактивных элементов измеряются не в весовых единицах на объем, а в количестве распадов изотопа за секунду в единице объема. Один распад в секунду в радиологии получил название «беккерель» (Бк). Таким образом, концентрации радиоактивных элементов в воде измеряются в беккерелях на литр. Наиболее распространенными естественными радиоактивными изотопами в природных водах являются изотопы калия с атомным весом 40 (K 40), радия (Ra 226), радона (Rn 222), урана (U 238). Как правило, их суммарная концентрация не превышает 10 Бк/л, однако в местах, где в геологическом разрезе встречаются радиоактивные минералы, концентрация естественных радиоэлементов в воде может достигать тысячи и более Бк/л.


Органические вещества

Пресные подземные воды всегда содержат то или иное количество органического вещества. В естественных условиях их содержание, как правило, уменьшается с глубиной. Состав органических веществ довольно сложен и может быть представлен всеми классами органических соединений. Наиболее распространены высокомолекулярные кислоты (например, гуминовые кислоты и фульвокислоты). Они постоянно присутствуют в грунтовых водах в количестве от одного до нескольких мг/л. В последние годы в подземных водах обнаружен целый ряд аминокислот, являющихся структурными элементами белков. Кроме того, в пресных подземных водах нефтегазоносных провинций, как правило, присутствуют нафтеновые кислоты и различные углеводородные соединения.


Таблица 30

Максимальная концентрация химических элементов в пресных подземных водах


Так как определение отдельных органических соединений в подземных водах затруднено, то, как правило, оценивается их суммарное число. Наиболее распространена суммарная оценка органических веществ с помощью величины окисляемости (мгО/л) количества органических углерода (C орг) и азота (N орг). Наиболее точной характеристикой общего содержания органических веществ в подземных водах является количество C орг.


Микроорганизмы

Из микроорганизмов наибольшее значение в пресных подземных водах имеют бактерии, также встречаются микроскопические водоросли, простейшие и вирусы. Различают аэробные и анаэробные бактерии. Первым для развития требуется кислород, вторые существуют при его отсутствии, восстанавливая сульфаты, нитраты и другие кислородсодержащие вещества. В пресных подземных водах зоны активного водообмена развиваются гнилостные, сапрофитные, денитрифицирующие и клетчатковые бактерии. Общее число бактерий может достигать миллиона на 1 мл воды, микроскопических водорослей – нескольких тысяч на 1 л, простейших – сотен и тысяч на 1 л. Число бактерий в воде зависит главным образом от наличия в ней питательных веществ. Болезнетворные бактерии, для развития которых нужен живой белок, сохраняются в подземных водах, как правило, не более 400 суток.


Газы

Основными газами, растворенными в пресных подземных водах, являются кислород, азот, углекислый газ и сероводород. В незначительных количествах встречаются и все остальные газы. По генетическим признакам выделяют газы воздушного происхождения (O 2 , N 2 , CO 2), биохимические (CO 2 , H 2 S, N 2) и газы ядерных превращений (He, Ra). Большое негативное влияние на потребительские свойства воды оказывает наличие в ней сероводорода. Это связано не только с органолептическими показателями. Сероводород вызывает интенсивную коррозию металлических обсадных труб и другого оборудования в результате образования гидротроилита (FeS x nH 2 O).

В пресных подземных водах преобладают растворенные формы химических элементов. Коллоидные формы присутствуют в основном в грунтовых водах. Главным образом – это соединения элементов с органическими веществами гумусового ряда, особенно с фульвокислотами, а также полимерные соединения кремнезема. В истинном растворе вещество может находиться в виде простых и комплексных ионов, а также нейтральных ионных пар и молекул.

Основные процессы, определяющие условия формирования химического состава пресных подземных вод

Практически все пресные подземные воды по своему генезису относятся к инфильтрационным водам, т. е. образовавшимся в результате инфильтрации атмосферных осадков. В дальнейшем химический состав инфильтрационных вод формируется под действием физико-химических и биохимических процессов, приводящих к равновесию между водой, водовмещающими породами, газами и живым веществом. Среди них в первую очередь следует выделить:

1) растворение – процесс перехода вещества из твердой фазы в жидкую, сопровождающийся разрушением кристаллической структуры твердой фазы;

2) выщелачивание – избирательное извлечение какого-либо компонента из твердого вещества, сохраняющего при этом свою кристаллическую структуру;

3) кристаллизацию – процесс выделения твердой фазы из насыщенного раствора;

4) сорбцию и десорбцию – процессы избирательного поглощения или выделения газообразных и растворенных веществ твердой фазой;

5) ионный обмен – процесс эквивалентного обмена веществом между твердой и жидкой фазами;

6) биохимические процессы – процессы, связанные с окислением или восстановлением вещества под действием микроорганизмов.

Все вышеперечисленные процессы взаимосвязаны и в свою очередь определяют характер окислительно-восстановительных реакций, протекающих в самом водном растворе.

В связи с глобальным загрязнением поверхностных вод централизованное водоснабжение все в большей степени ориентируется на подземные воды. Однако в условиях растущей техногенной нагрузки на окружающую среду и подземные воды подвергаются загрязнению. Техногенные компоненты обнаруживаются уже не только в верхних, слабозащищенных, водоносных горизонтах, но и в глубоких артезианских резервуарах. Загрязнение подземных вод влечет за собой целый ряд экологических и социальных последствий. Требует серьезного внимания распространение загрязняющих компонентов из подземных вод по пищевым цепям. В этом случае токсические элементы попадают в организм человека не только с питьевой водой, но и через растительную и животную пищу. Даже если население не пьет загрязненную воду, а только использует ее для приготовления пищи, водопоя скота и полива растений, это может отразиться на здоровье не только нынешнего, но и последующих поколений. Своевременный, оперативный и качественный контроль химического состава воды, используемой для хозяйственно-бытовых целей, является одним из условий улучшения состояния здоровья населения. Проблема качества подземных вод в настоящее время превратилась в одну из самых актуальных проблем человечества.

Значение химического состава воды при ее использовании

Пресные подземные воды используются как для питьевого водоснабжения, так и в промышленности, сельском хозяйстве, на транспорте – практически во всех видах человеческой деятельности. В зависимости от целей использования воды требования к ее химическому составу могут быть различными. К воде, применяемой в различных отраслях промышленности, предъявляются требования в соответствии со спецификой данного вида производства. Например, в сахарном производстве необходимо, чтобы вода имела минимальную минерализацию, так как присутствие любых солей затрудняет варку сахара. В пивоваренном производстве требуется отсутствие в воде CaSO 4 , препятствующего брожению солода. В воде, применяемой для винокуренного производства, нежелательно присутствие хлористого кальция и магния, которые задерживают развитие дрожжей. В текстильной и бумажной промышленности не допускается присутствие в воде железа, марганца и кремниевой кислоты. Производство искусственного волокна требует малой окисляемости воды (менее 2 мг/л) и минимальной жесткости (до 0,64 мгэкв/л). Такие же требования по жесткости предъявляются к воде и в энергетической промышленности. К воде, используемой для хозяйственно-питьевого водоснабжения, предъявляемые требования можно свести к двум основным условиям – безвредности ее для организма и удовлетворительному качеству по вкусу, запаху, прозрачности и другим внешним свойствам.